
AD-A246 080

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE
FEB 20 199211

.S D THESIS

DESIGN AND IMPLEMENTATION
OF A MULTIMEDIA DBMS:

MODIFICATION AND DELETION

by

Rosemary Ellen Stewart

September 1991

Thesis Advisor: Vincent Y. Lum

Approved for public release; distribution is unlimited.

92-03883

tJA ,S.-L..,* t JSP AJ.*A

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
'I. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb- RESTRICTIVE MARKINGS

2a SECURITY CLASSIFRCATION AUTHORITY 3. DISTRIBUTIONAVALABILITY OF REPORT
2b. DECLASSIICATIONDOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§O NAME OF JEEFORMMG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

omputer 9cience Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS37

Sc. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey. CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Socurfty Classifcation)

DESIGN AND IMPLEMENTATION OF A MULTIMEDIA DBMS: MODIFICATION AND DELETION (U)

12. PERSONAL AUTHOR(S)

STEWART, Rosemary Ellen

asTe EPRT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15.PAGECOUNT
te'r S Is FROM 08/89 TO 09/91 September 1991 244

16. SUPPLEMENTARY NOTA The views expressed 1 this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on revese if necessary and idanty by block number)

FIELD GROUP SUB-GROUP Multimedia Database Management System, Multimedia, DBMS, MDBMS,
Media Database: Retrieval, Deletion and Modification.

19. ABSTRACT (Continue on reverse if necessary and identiy by block number)
At the Naval Postgraduate School, computer science students are currently working on a multimedia database

management (MDBMS) project. This prototype designed in 1988, has tht ability to capture, store, manage, retrieve
and present both standard data, like alphanumerics and numerics, and media data. Media data in this thesis refers to
graphics, signals, sound and image and is stored using the abstract data type (ADT) concept. The MDBMS is built

upon a conventional INGRES DBMS using ADT's. The multimedia database management system (MDBMS) can
integrate audio, image, and formatted data so that these forms of data can process in the following ways: create tables,
insert, delete, and retrieve. A complete database management system, requires deletion and modification operations
to remove data already stored in a MDBMS or modify data in MDBMS storage. Formatted data is passed directly to
INGRES for all types of processing. However, the inclusion of media data types in the MDBMS requires additional
data structures and applications for modifying data that the INGRES catalog management cannot process directly. The
special handling, SQL operations required to process data are discussed. This thesis concentrates on the design and
implementation operations for deletion and modification of formatted and unformatted data in the MDBMS.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
(3 UNCLASSIFIEDJNLIMITED [] SAME AS RPT. C] DTIC USERS UNCLASSIFIED

V: NAMEfI EEUSmPONSIBLE INDIVIDUAL. 22b. TELEPHONEJInc.ude Area Code)]7c.fICE SYMBOL
cent . (408) 646-2175

D0 FORM 1473, 4 WAR 83 APR edition may be used undl exhausted SECURITY CLASSIFICATION OF THIS PAGE
AI other editons are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A MULTIMEDIA DBMS:
MODIFCA TION AND DELETION

by
Rosemary Ellen Stewart

Captain, United States Army
B.S., United States Military Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author:

Approved By: 7,- ,e-----
Vincent Y. Lunu Thesis Advisor

,Cu ScnReader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

At the Naval Postgraduate School, computer science students are currently working on a
multimedia database management (MDBMS) project. This prototype designed in 1988, has
the sbility to capture, store, manage, retrieve and present both standard data, like alphanu-
merics and numerics, and media data. Media data in this thesis refers to graphics, signals,
sound and image and is stored using the abstract data type (ADT) concept. The MDBMS
is built upon a conventional INGRES DBMS using ADT's. The multimedia database man-
agement system (MDBMS) can integrate audio, image, and formatted data so that these
forms of data can process in the following ways: create tables, insert, delete, and retrieve.
A complete database management system, requires deletion and modification operations to
remove data already stored in a MDBMS or modify data in MDBMS storage. Formatted
data is passed directly to INGRES for all types of processing. However, the inclusion of
media data types in the MDBMS requires additional data structures and applications for
modifying data that the INGRES catalog management cannot process directly. The special
handling, SQL operations required to process data are discussed. This thesis concentrates
on the design and implementation operations for deletion and modification of formatted
and unformatted data in the MDBMS.

Accesion For

NTIS CRA&I
OTD TAi-
U: a. i. ;o , d i

.

By

Availatility Codes

Avait a"° 1o..... PJ/or

Ditst Special

iii

TABLE OF CONTENTS

1. INTRODUCTION 1
A. BACKGROUND 1

B. RELATED WORK 2

C. SCOPE OF THE THESIS 3

D. OVERVIEW OF THESIS 4
I

II. SURVEY OF MDBMS 5

A. DEVELOPMENT OF MDBMS 5

B. SYSTEM ENVIRONMENT 6

1. Hardware Configuration 6
2. Software Configuration 7

3. Natural Language Parsing 8
a. Multimedia Data Described in Natural Language 8
b. Representation Of Media Data Objects 9
c. The Application Dependent Dictionary 12
d. Natural Language Interpretation in the Parser 12

4. System Architecture 13

C. IMPLEMENTATION OF THE MDBMS PROTOTYPE 15

1. Internal Data Structures Used to Implement the Other Modules 15
2. Table Creation 16
3. Data Insertion 16

a. Formatted Data Insertion 17
b. Media Data Insertion 17

4. Retrieval of Data 19
a. Retrieving Formatted Data 19
b. Retrieving Unformatted Data 19

5. Modification and Deletion Requirements in System Design 20

III. MODULARIZATION 22

A. DEFINITION OF MODULARIZATION 22

B. REASONS TO MODULARIZE 22

1. Comprehensibility 23
2. Division Of Work 23

iv

3. Easier To W rite 24
4. Easier To Change 24

5. Reusability 25
6. Easier To Test 25

C. HOW TO MODULARIZE 26

D. MODULARIZATION OF C PROGRAMS 29

1. No Support For Modularization in C 29

2. A Concept For Modularization In C 29
a. Similarities Between C and Modularization 31
b. Making Dependencies Between Modules Visible 31

E. MODULARIZATION OF MDBMS 33

F. TOOLS USED WITH MDBMS 36

1. Lint - A Program Checker 36

2. DBX -A Debugger 37

3. SCCS -A Tool for Version Management 37

IV. DELETION IMPLEMENTATION 39

A. INTRODUCTION 39

1. Why Deletion Operations are Important 40

2. Schema of Database Relations 40

B. DESIGN AND IMPLEMENTATION OF DELETE 42

1. Retrieval of Information for a User Query 44
a. Formatted Data Retrieval Operation 47
b. Media Data Retrieval Operations 47

2. Approach to Deletion of Data from the MDBMS 50
a. Main procedures for the Delete Operation 51
b. Testing Methodology 52

C. USER INTERFACE EXAMPLE 53

1. Retrieval Conditions - Input Phase 54

2. Execution Phase 55

V. MODIFICATION METHODOLOGY 62

A. INTRODUCTION 62

1. Why We Need a Modification Option 63
2. How modification works in general 63

V

3. Design Issues for the Information Storage in the MDBMS 63

B. DESIGN AND IMPLEMENTATION FOR MODIFICATION 66

1. Testing Methodology 66

2. Main Procedure for the Modify Operation 67

C. USER INTERFACE EXAMPLES 69

1. Query 1 - Formatted Data Modification 69
2. Query2 - Media Data Modification 76

VI. CONCLUSIONS AND RECOMMENDATIONS 85

A. REVIEW OF THESIS WORK 85

B. FUTURE WORK 86

C. MDBMS IMPROVEMENT POSSIBILITIES 87

APPENDIX A: SOURCE CODE FOR DELETION 89

APPENDIX B: SOURCE CODE FOR THE MODIFICATION 195

APPENDIX C: RUNNING THE DATABASE 222

APPENDIX D: MAKEFILE AND SAMPLE DICTIONARY 224

LIST OF REFERENCES 232

INITIAL DISTRIBUTION LIST 234

vA

LIST OF FIGURES

Figure 2.1 Representation of a Value of Type Image 9

Figure 2.2 Representation of a Value of Type Sound 10

Figure 2.3 Schema for Modeling Relationships Between Standard Objects and Media

Objects 11

Figure 2.4 The Current MDBMS Architecture14

Figure3.1 Generic Module-Hierarchy27

Figure 3.2 Generic Module Structure and Format for a Module28

Figure 3.3 Example of Import-Export Preamble 28

Figure 3.4 Export/Import Interface of a Module 33

Figure 3.5 Existing Module-hierarchy34

Figure 3.6 Current MDBMS Hierarchy 35

Figure4.1 Navy Ship Database Relational Schemes42

Figure 4.2 Media Relation Schemes for Navy Ship Media Attributes 43

Figure 4.3 Media Relation Schemes for Navy Ship Media Attributes 46

Figure 4.4 INGRES Pre-Compiled SQL Code 50

Figure 5.1 Table List, Table Array and Value Array Tables for the Catalog Using the

Officer Table as the Data Entries 65

Figure 5.2 AttArray for the Catalog Using Officer Table Data Entries 65

Figure 5.3 Media Relations After Modification of Data Values84

vii

ACKNOWLEDGEMENT

I am grateful to all the instructors and students for their interest and research in the mul-
timedia database management (MDBMS) project who, at this point, are too numerous to
mention by name but are referenced heavily in my thesis. Without their work, I would not
have become involved with the prototype. I thank Daniel Keim for his contributions and
valuable input to the MDBMS prototype, and my thesis companions, Charles A. Peabody
and Huseyin Aygun, with whom I worked as a team to develop the current MDBMS. I ex-
press sincere thanks to Professor Vincent Lum, Daniel Keim and Suleyman Bayramoglu for
their encouragement and support in the conception and preparation of writing my thesis.

W

viii

__ _ _ _ _ m .-,..-. m m m am ~ mww&

I. INTRODUCTION

A. BACKGROUND

The increasing demands in automating many applications intensifies the need for

ways to gather, store and manage varied forms of data. Today's computer technology

allows better and more efficient methods to perform many operations. Standard data, in the

form of numerics and alphanumerics, is easy to handle and requires relatively small storage

space in database management systems (DBMS). However, other types of data are needed

in the workplace today. The medical, educational, and military fields are examples of areas

that need instantaneous access to graphics, photos, images, sounds, signals and videos in

conjunction with standard text data. These forms of data are generally referred to as media

data or sometimes as unformatted data. Multimedia database management systems

(MDBMS) handle the storage, retrieval, and manipulation of media (or unformatted) as

well as standard (or formatted) data.

A major operation on accessing DBMS data is by means of content search. In a

MDBMS, content search is difficult to achieve since the media data is unstructured,

complex, and intrinsically rich in semantics. One way to build on the content search

methodology and to simplify the work involved is to perform the content search on verbal

descriptions of the multimedia data. A project using this technique is introduced here.

In the Computer Science Department at the Naval Postgraduate School, a multimedia

database project was established in 1988. The goa! of the project is to build a prototype

multimedia database management system (MDBMS) for capturing, storing, managing,

retrieving and presenting both standard and media data. This project, called the Multimedia

Database Management System (MDBMS) Project, integrates audio, image and formatted

data providing the ability to create tables for the storage of data and to insert, delete, and

retrieve the data. [Ref. 9]

Each media graphics, image, signal or sound type has peculiarities in capture, storage

and retrieval because of the varied manner that the media type is comprised. Sound media

1

data requires sampling rate, frequency and duration. Image data requires pixel size

information. The space to store these objects in a computer varies from a few thousand

bytes to beveral megabytes. In the MDBMS prototype these media data types are

represented as one unique value or object using the Abstract Data Type (ADT) concept.

This concept allows each media type to be treated as one unique value of the type "media"

[Ref. 10]. The ADT concept permits the media data to be handled by the conventional

database management operations of create, retrieve, modify and delete.
I

B. RELATED WORK

In other locations around the globe, research projects involved in the processing of

multimedia data are devising ways to manage complex media data. At the University of

Waterloo, a team developed the MINOS project. This system manages highly structured

multimedia objects that consist of attributes as well as text, im. ge, and voice parts. MINOS

is an object-oriented multimedia information system that provides integrated facilities for

creating and managing complex multimedia objects. Intricate browsing and user interface

features facilitate the browsing of the schema and synchronized updates. [Ref. 5] A

database program that undertook several multimedia projects by establishing database

requirements for multimedia applications is the MCC Database Program, ORION [Ref.

21]. In this program, requirements for a data model and for the sharing and manipulation

of multimedia data were identified. ORION is an object-oriented database management

system developed at MCC in Austin, Texas. ORION contains a Multimedia Information

Manager (MIM) for processing multimedia data [Ref. 21]. MODES I and MODES2 are

two "mixed-object database systems" developed in the IBM Tokyo Research Laboratory

[Ref. 8]. An ESPRIT project designing a multimedia filing system called MULTOS [Ref.

2, Ref. 3] is a European contribution to the field. These projects are discussed in detail in

(Ref. 10, Ref. 11, Ref. 12] and will not be presented in more depth in this thesis.

Other related research areas are hypertext and hypermedia for individual computer

systems. This concept of hypertext came into the computer systems arena in the 1960's.

2

Initially designed to manage linked text segments, it now has become "hypermedia" in its

extended version of managing images and sound [Ref. 10, Ref. 11]. The ARGOS project

being developed at the Naval Postgraduate School uses Macintosh computers with a

hypercard apphcation [Ref. 21]. Hypertext and hypermedia data management uses the

hierarchical data structure technique that forces queries to follow a hierarchical tree

structure to process media data. This method does not permit queries of the data as in

conventional database management systems. An interpreter is required to process the user

commands. Because hypertext and hypermedia are found on personal computer systems

and are not networked, the sharing of data as in most database systems does not usually

occur. The MDBMS was initially designed to overcome the shortcomings and

disadvantages of hypertext and hypermedia systems.[Ref. 21]

C. SCOPE OF THE THESIS

The MDBMS project continues to conduct research and improve its MDBMS

prototype. The design of the system and many of the operations, including table creation,

data insertion, and data retrieval, have been presented by Meyer-Wegener [Ref. 11], Lum

[Ref. 10], Atila [Ref. 1], Pongsuwan [Ref. 15], and Pei [Ref. 14]. Thesis by Aygun, [Ref.

2] covers complex retrieval and nested query operations for the MDBMS. A natural

language parser in PROLOG was created that would understand the meaning of the natural

language captions which describe the content of the media data. The parser recognizes the

syntax and semantics of the natural language descriptions the user makes in a query. The

parser interacts with the multimedia database to locate the appropriate data items [Ref. 6,

Ref. 7, Ref. 16]. The parser, designed for content based search for media data, aids the user

in the retrieval of the image description stored with the actual image.

The current version of the prototype has the ability to create the tables, input both

formatted and unformatted data, and to retrieve that data from the database. The MDBMS

needs deletion and modification portions to provide all the basic database management

operations. This thesis will concentrate on the complex methods and operations of data

3

modification and deletion in the MDBMS specifically the deletion and modification of data

involving image and sound and the integration of media with formatted data. With the

completion of the deletion and modification procedures of the NPS MDBMS project, the

prototype will be a database management system complete with the capability to manage

different types of media data.

D. OVERVIEW OF THESIS

This thesis comprises six chapters and four appendices. Chapter II provides the

discussion of the previous -'3rk done and the background development of the MDBMS

project. The chapter covers key features of the system environment, including the software

and hardware architecture of the system, and the data structure design for the

implementation of the system modules. The design for the deletion and modification

sequences are first mentioned in this chapter. Chapter III, presents the modularization work

on the MDBMS project programming code. Chapter IV concentrates on the design and

implementation of how information already stored in the database is deleted. This deletion

procedure implementation is an important preliminary step to replacing and modifying

existing code in a MDBMS. Chapter V concentrates on the details of the design and the

implementation operations of the modification procedures. Chapter VI, summarizes the

work and its performance by presenting conclusions and recommendations for future work,

as well as work currently in progress or planned. The program code for the modification

and deletion modules appear in the Appendices. Appendix A presents the deletion

procedures sequence code as arranged in the Retrieve.c module. Appendix B has the

modification procedures code. Appendix C has an example of running the database.

Appendix D consists of the Makefile and sample parser dictionary.

4

II. SURVEY OF MDBMS

A multimedia database management system (MDBMS) is defined as a system that

manages media data: image, text, voice, and signals along with formatted data. Several

mechanisms are necessary in the MDBMS to manage data properly; e.g. concurrency

control, consistency checkers, and recovery capabilities. Provisions for query language and

query processing are also requirements for a MDBMS to operate. The MDBMS

architecture is given in this chapter, including the actual hardware, software and

interconnections of the MDB MS. All areas have evolutionary discussions explaining their

current state of development. The data organization for multimedia objects and the manner

in which the media objects interface with the conventional data are important concepts to

be explained. Presentation of the natural language parser and the implementation of the

running modules of the MDBMS are also presented in this chapter. Previous work on the

MDBMS is discussed in detail in the works of Atila [Ref. 1], Pei [Ref. 14], and Pongsuwan

[Ref. 15]. Enough information to familiarize the reader with the general hardware and

software environment and the assumptions made for the research are given without

restating the previous theses.

A. DEVELOPMENT OF MDBMS

The initial 1988 hardware architecture for the MDBMS proposed by Lum [Ref. 9],

was changed over time as more individuals worked on the project. The major concern of

all involved was to have an architecture that would allow the processing of multimedia data

as timely and conveniently as it is to process standard formatted data within a conventional

database. The MDBMS is a system developed on top of an existing DBMS such that it

allows the processing of media data. The Intelligent Retrieval Subsystem, the natural

language parser and matcher, are added to define operations that would help support

content search. Content search is important in order to allow an easy but powerful retrieval

of the multimedia data. Content search is difficult to achieve because of the complexity and

5

the different characteristics inherent to the different media types. A content search,

performed on the media attributes only, is the task of locating the media data corresponding

to a specified content. An example of a content search is a database with ships. How can

we determine what type of ship is pictured in the photo? To find out if the ship is a cruiser,

destroyer, or submarine, more information aside from the photo is necessary. Another

example is an image of a weapon. How do we know if it is one carried on a ship or one

carried by a sailor? Or if the weapon is a U. S. weapon or from another country? A very

observant individual needs to analyze the photos and record all the contents in such a

manner that the contents could be retrieved based on objects or actions seen in the photo.

Technology today is not able to answer the question on the type of ship or the make of the

weapon. We can locate this information using two areas of research: Artificial

Intelligence(AI) and Information Retrieval (IR). We can define the contents of the photo

(multimedia data) into text captions and use the text description equivalent to the media

data to match and then retrieve the data.

B. SYSTEM ENVIRONMENT

The MDBMS prototype consists of hardware, software, and the interaction of these

two configurations. In this section, the hardware, the software, and the implementation of

prototype are presented. In the discussion of the implementation, the internal structures

necessary for the module operations are mentioned.

1. Hardware Configuration

The hardware design of the prototype MDBMS is a SUN-3 workstation in a

UNIX environment connected by an ETHERNET to an IBM PC. The IBM PC is used to

manage the sound data. The hardware design requires the use of the multiple languages and

management systems to make the system work.

6

2. Software Configuration

As mentioned, the MDBMS prototype was built on top of an existing DBMS

system, INGRES, to support formatted and multimedia data. INGRES has the ability to

manage stored data. INGRES possesses many positive traits desired in a DBMS. However,

INGRES does have many restrictions which prevent it from being the optimal management

system such as it does not support the ADT concept. The ADT concept provides the best

way to perform data storage for the data management of media data, and, therefore, it was

chosen to implement the MDBMS prototype. INGRES uses an internal catalog system.

This type of catalog system prevents the user from readily accessing data already stored.

INGRES does support embedded SQL with C as a host language. The user must pre-

compile the SQL statements into INGRES low level code for execution where no high level

function calls are available. Query statements to the database are in the embedded SQL

(ESQLC) format. [Ref. 15] Examples of the SQL statements are found in Chapter IV and V.

C is the main language used in this prototype system. This language is a general

purpose programming language and is generally used in the coding to build user utilities

and interfaces for this project and other systems. INGRES is used as the information base

since it is flexible enough to manage the unformatted data information within its catalog

management facility. Early on in the project, a version of the INGRES catalog management

was chosen to organize the data tables. Newer versions of INGRES have since been

available on the commercial market and provide better, more efficient operations for the

MDBMS than the one being used. However, the budgeted cost for this prototype, which is

only a demonstration model, did not justify the enormous expenditures for the newer

INGRES version. The recoding of all the prototype code completed thus far on the database

project was another reason that no conversion to the newest software was made. In addition,

the IBM PC is necessary to maintain the audio portion of the database because management

of sound was not available in the early SUN workstations.[Ref. 1, Ref. 15]

ETHERNET, a Local Area Network (LAN), is the mode in which the sound data

is transferred to the SUN Workstation from the IBM PC. This transport system software

7

provides the conduit that allows the sound data to pass through to the rest of the entire

database. Quintus Prolog is a programming language used to interpret the natural language

descriptions and then to match them to those descriptions stored in the dictionary. User

applications such as the parsing are implemented with minimal difficulty.

3. Natural Language Parsing

A natural language parser to process the description of the image and the sound

data was incorporated in the MDBMS in 1989. The natural language understanding

capabilities of the parser is limited to captions which are a subset of the natural language.

The limited interpretations are controlled by the parser component using the application

dependent dictionary as a semantic base. To accomplish the goal of content retrieval of

multimedia data, only this limited caption interpretation is required instead of complete

understanding of natural language description of the media data.

a. Multimedia Data Described in Natural Language

Retrieval of multimedia data is performed by matching the natural language

descriptions with the given query specifications. Based on the Artificial Intelligence (AI)

technology of today, if the natural language were unrestricted, then the processing of

queries would be difficult to accomplish. The natural language needed to describe

multimedia data is very formal compared to daily spoken English. Therefore, instead of

natural language descriptions, captions are used to describe multimedia data. Captions are

a natural, yet stylized way of writing descriptions within a subset of the natural language.

Captions are much easier to interpret and to parse than generic natural language. The

important aspect of the natural language is to access entities in a database removing the

need to have a complete understanding of all meanings of a word. For a particular

multimedia application, the universe of discourse is usually quite constrained. The universe

of discourse is the narrow domain of the system's ability to understand everything written

in the natural language and the words that are inserted in the dictionary. Nouns are usually

concrete objects and, thus, most multimedia databases emphasize still photographs. Other

8

types of fixed time graphics are not usually the objects media databases emphasize, as few

verbs can be applied to them and are used to describe the media data.With this in mind,

natural language parsing and interpretation becomes a simpler process.

b. Representation Of Media Data Objects

Many researchers in the multimedia field arrange their media data using the

Abstract Data Type (ADT). The acceptable Abstract Data Type (ADT) serves a useful

purpose in the MDBMS. The media data object models, which in this database refer to

sound and image, consist of three parts: the registration data, the raw data. and the

description data. A generic example of the media object model's three parts are shown in

Figures 2.1. and 2.2. Registration data pertains to the display and the interpretation of the

IMAGE

K REGISTRATION DATA:

Height, Width, Depth, Colormap

L RAW DATA:

(BITMAP /RASTER FORMAT):
Matrix of Pixels.

DESCRIPTION DATA:

Text String...

short hair, blue eyes

Figure 2.1 Representation of a Value of Type Image

media object. The registration data uniquely depicts which type of media object is stored

within the database. Most registration data is of fixed format since the field lengths of

information needed to access the media data are known. As listed in the figures, Figures 2.1

9

and 2.2, the techniques used to encode and to capture the media data give the user a text

explanation of the type of media data. The raw media data displays the actual media object

the system manages. For images, a pixel matrix is one example of a raw data entry. Signals

and sounds have bit string representations that are the result of digitizing the original media

objects. Description data describes the object representation of the raw data in a natural

language. This data is used for content search in the computer. A natural language form is

entered by the user. After the description is added to the dictionary in the MDBMS, the

sentence or phrases are run through a natural language parser written in the PROLOG

language. [Ref. 6] The content search is complete and successful when a match is made of

the media data description and when the items are entered in the dictionary.

SOUND

C REGISTRATION DATA:

Size, SampleRate, Encoding, Duration
Resolution...

CRAW DATA:

Sequence of Frequency Indicators...

C DESCRIPTION DATA:
Text String...
sweet voice, loud voice

Figure 2.2 Representation of a Value of Type Sound

The relational model is the basis for the design of the prototype of the

MDBMS. The relational model is a leading model in the database field in which much

10

research is being done. If a relation has a media type attribute such as sound or image, then

a media relation is created for storing the registration and the description data as displayed

in Figures 2.1 and 2.2 [Ref. 14]. A separate media relation is created for each attribute with

a media data type. A generic relation called OBJECT has the media attributes photo and

voice along with the other conventional data type attributes. See Figure 2-3. When an

attribute of image type is in the relation, a media relation is created for the image called

PHOTO. The PHOTO relation has an integer value called iid that is used as the reference

table key number to locate the media relation and link it to the OBJECT relation. Another

attribute, file-id, keeps track of the path to the raw data where the image object is

maintained. Along with the raw data is the description and the registration data. The

description data is a natural language description of the image content. The registration data

consists of the height, width, and depth of the image object.

OBJECT

OI PHOTO VOICE

PHOTO

IID FILED DESCRIPTION HEIGHT DEPTH WIDTH

VOICE

SID1j FILEID1 DESCRIPTION SIZE RATPE DIJRATON ENCODE

Figure 2.3 Schema for Modeling Relationships Between Standard Objects and Media
Objects

11

Media sound attributes are handled in a similar fashion as shown in figure 3.

The voice attribute of the OBJECT relation has a created media relation called VOICE. The

VOICE relation has a sid that functions like the iid does for the image. S id is the table

key and file id records the path to the file where the raw data for the sound object resides.

The description part holds the actual sound and the natural language description of the

sound while the registration data part of the sound holds the variables for recording the

sound. The registration data part includes the encoding, duration resolution, size, and

sample rate of the sound object.

c. The Application Dependent Dictionary

The MDBMS requires auxiliary information from a dictionary. The

dictionary is important for parsing and providing every possible natural language word

through acmantics, parts of speech, grammatical form, and the literal forms needed to

represent it. The dictionary is domain dependent since the same word may have different

meanings in different application areas. However, conjunctions and qualifying adjectives

are consistent in meaning across a wide range of domains. Interpretations from existing

natural language systems can be borrowed and included in the dictionary. Some words

change significantly between applications. These are generally nouns and some verbs.

Because they change in meaning, they must be defined for each application domain. To

make matching easier, the properties and the relationships are limited to a small set of

primitives. Because we are just looking for the main intent of the English expressions not

to capture the media data's full meaning, the following expressions are not defined between

relationships asserted by the terms within, inside, part of, containing, including and

compromising.

d. Natural Language Interpretation in the Parser

The parser translates the text description into a set of predicates called the

meaning list. By transforming them into a set of predicates, the ambiguity and imprecision

of the natural language descriptions are reduced immensely. These predicates state facts

12

about the multimedia data real world entities, like their properties and relationships. First

order predicate calculus is the parsing method chosen as the formal representation of the

description data. The dictionary is responsible for turning the descriptions into predicates

for the parser. The parser's task is to use the dictionary to check the syntactic context to

resolve lexical ambiguities and resolve synonyms.

Other features of the parser are the use of supercaptions, a generalization of

captions and frames for stereotypical actions. These allow a set of predicates to be derived

from terms in the media description. Details of the parser and the predicates are beyond the

scope of this thesis but are provided in Dulle [Ref. 6], Keim [Ref. 9], and Rowe [Ref. 14].

The parser is implemented in Quintus Prolog and runs on a SUN SPARC

workstation. The parser in its current configuration uses augmented-transition network

parsing and interpretation routines. One example of a natural language description and

translation into an equivalent set of predicates using the parser is:

Media Description: "She has blue eyes"

Predicates: officer(x), component(xy), color(y).

All the descriptions must be defined in the dictionary so that the correct set of

all predicates for the description are recognizable. See Appendix D for a sample of the

dictionary. Choosing the right set of predicates is a challenging task similar to knowledge

acquisition for expert systems [Ref. 16]. In this thesis, it is enough to state that the

dictionary contains all the words the parser can recognize, all the parts of speech associated

with any word, and the predicates to use when a word appears in a media description.

4. System Architecture

There are four main areas in the overall MDBMS. These areas are the User

Interface, Query Processor, Data Access Subsystem and Intelligent Retrieval Subsystem

See Figure 2.4. The User Interface provides the user and the database with the interactive

information necessary for the query processing to occur.The Query Processor accents

queries from the user.The Query Processor interconnects the components of the systems by

13

calling the other components when the user queries the system. The Data Access Subsystem

consists of the Conventional Data Manager and the Media Data Manager. The Data Access

Subsystem controls the access to the actual data stored in relational and media DBMS. The

Intelligent Retrieval Subsystem is comprised of Parser, Generator, Matcher, and

Description Manager.

MDBMS User Interface

Query Processor

Ma.nager Mnager Manager Ma tcher- Pase
on Immaage

Manager Manager

!e Domain

Manager Knowledge Dictionary

Data Access Subsystem Intelligent Retrieval Subsystem

Figure 2.4 The Current MDBMS Architecture

The queries are then executed by the Query Processor which accesses the other

components. If a media data value receives a new description, then the query processor

calls upon the parser. The parser then must reference the dictionary and create the first-

order predicates pertaining to the description. These predicates are then returned to the

query processor. The Description Manager receives the predicates which then links the

14

description to its multimedia and conventional data managers. The standard formatted data

is managed as in other database management systems by the conventional data manager.

Queries related to just the standard data are managed in this region. The Media Manager

deals with the queries when media attribute types are involved in the user interactions.The

Media Manager has two sub-area managers, one for image and one for sound. Lum [Ref.

9] presents the detailed description of the MDBMS architecture. The Media Data Manager

handles the processing of both the formatted and unformatted data as media data is not

usually in a relation by itself, it usually is part of an relation that includes some formatted

data. The Abstract Data Type concept was considered the best method for this model's

taskings. Abstract data type is not the same as the usual data types like characters, integer,

and boolean since the storage of ADT's are not the same every time the ADT are used. The

new media data "values" are handled differently in the processing. The relations with the

media data values have an additional relation id, identifier for the tuple relations. [Ref. 7]

C. IMPLEMENTATION OF THE MDBMS PROTOTYPE

The implementation of the MDBMS prototype became possible with some internal

storage structures and the various operation modules. The internal data structures are

temporary storage locations while the sub-parts of the user query are attaining the solutions

to their sub-query. Along with the internal data structures, a summary for each of the

operations (table creation, insert, retrieve and the design ideas for the delete and

modification portions) are presented in this section for better understanding of the entire

MDBMS.

1. Internal Data Structures Used to Implement the Other Modules

For there to be a need for delete or modification procedure, there has to be a

method to have created, inserted, and retrieved the data in the database management

system. Internal data structures for temporary storage assisted in placing the necessary data

into the proper structures. The data is arranged in tables for storing the catalog information.

A detailed description of the create table is provided in Pei [Ref. 14].

15

The four tables and their functions are outlined below: (1) TableList: The

integers are the pointers of the database and the keys for searching, sorting, and maintaining

the data located within the other tables by means of the Table-Array. (2) TableArray

Retains the formatted data, possesses the tuple names, and the data if a sound or image

attribute is connected with a specific tuples information. (3) MediaArrav: Tracks the

media data located in the database by type, be it sound or image. (4) AttArray: Contains

the attribute names and data types for both formatted and media data for every attribute. It

is an interface of the media (image and sound) data.

A fifth array, called a ValueArray, exists in this database arrangement. This

array provides the valid value types of the attribute entries as they are entered in the

attribute array. The values are the traditional char, integer and real plus the special value of

media data. These items become very important when attempting to relocate a specific file

or piece of data for modification. [Ref. 10, Ref. 15]

2. Table Creation

Table creation is one of the major operations in MDBMS. The user defines the

template for the data storage structures based on the arrays listed in Section C above. The

acceptable table name size, values, and categories of attributes necessary for table creation

are given to the user in order to create the data table relations. The user must place the

relation name, attribute name, and the data type of each attribute in the system. The

information is captured and stored in the MDBMS system tables. An active media list is

generated and maintained to keep track of the media ADT s created and in current use. [Ref.

14]

3. Data Insertion

After the data storage structures are defined, the information the user wants to

store is then inserted into the system. This operation is the first operation where data values

are placed into the MDBMS prototype. The data insertion procedures are explained in

detail in [Ref. 14]. The five types of data supported by the prototype are character, string,

16

integer, float, image, and sound. Three of these are formatted and two are media data types

in MDBMS. Five value arrays are designed for data insertion. The value arrays are

discussed in Chapter V. These arrays function as temporary tables. Tracking the pointers in

the value arrays is very important to the modification portion of the database. Replacing the

data stored in the correct relation requires the knowledge of the pointers' locations.

Data is added to the database by creating relations and placing the data in thr

relational structure identifier tables the user created in the table creation procedure. Each

attribute is checked to ensure that a media type is not encountered. If a media type is

encountered, special processing must occur.

a. Formatted Data Insertion

Placing conventional formatted data in a relational structure is simple. The

relations structure used requires the attributes and the attribute data types to be clearly

defined. The relation name, attribute names (in sequence), and the attribute data type must

be integer, real or character. Each attribute data type must be followed by its length for

exact definition. When standard formatted data types alone are used, which means media

data is not involved, the standard data and the create table command are passed directly to

INGRES. This is accomplished by means of the create table command in SQL. Because the

media data type cannot be handled by the INGRES system directly, media data inclusions

follow another procedure for getting added to the database.[Ref. 16, Ref. 18]

b. Media Data Insertion

When media data type attributes are encountered, the applicable media type,

audio or image, is entered in the AttArray Table under the appropriate data type value

image or sound. A request to INGRES to create a media relation specifically for this

attribute is processed. The structure of the media relation differs depending on whether it

is image or sound. Iid is the system assigned internal identification that is used for each

value to be entered in the media image table. For the sound data type, the s-id is the system

17

assigned internal identifier that is used as the value to be entered in the attribute voice of

the user relation OFFICER. Both are integer indexes in their respective tuple relations.

For example, photo, an attribute of the user specified in the relation OFFICER

is arranged in the database in the following files. I image_f is the file where information

on the image and the exact path where this file exists. Iimaged is where the natural

language description of the content of the image. The parameters of the height, width, and

depth for the image file are necessary to reproduce the recorded image data. For the sound

data type, the sid is the system assigned internal identifier that is used as the value to be

entered in the attribute "voice" for the user relation OFFICER.

Frequency, sample, resolution, and encoding are the parameters that are

necessary to reproduce the recorded sound data. The way that the audio and image data are

added to the database requires the integration of the IBM PC and SUN systems. The last

attributes for any new relation are the media types image and sound. This provides the

indexing and pointing necessary to attain access to the media storage of the database.

Another example: if a user desires to add the additional data of an image to his OFFICER

relation, the user must first digitize the image in the correct format on an IBM PC for the

system to display back on the SUN system at a later date. At the present, a video camera

recorder is used to record the photo that is then converted to GIF, Graph Interchange

Format, on an IBM PC file. From the IBM PC, this digitized image is then transferred to a

SUN workstation where the GIF file is converted into the SUN raster format [Ref. 15]. The

image the user wanted in the OFFICER file is now available for use modification and/or

display by using the SUN workstation. A more in depth discussion is presented in [Ref. 151.

For audio, the data insertion is entered in the same manner. The difference is

that the sound file is stored in the PC instead of the SUN workstation [Ref. 1]. No

duplication of the sound file is necessary. In the MDBMS, a text file is generated to keep

the information of the sound by giving it a file name, taking the registration data of that

sound object to include parameters of frequency, resolution and the duration. This file

assists in locating the actual sound maintained in the IBM PC. The majority of the

18

parameter information is decided before the actual recording of the sound file datum and is

stored in a way that simplifies the processing of sound in the MDBMS. The

active media list discussed in the create table module is used the processing of the media

data insertion as well. For accessing data for the modification procedure, understanding the

proper manipulation of the activemedialist counter is necessary.

4. Retrieval of Data

Retrieval is the most important operation in the MDBMS. The deletion and

modification operations depend on the proper retrieval of data from the database prior to

commencing the removal or the update of the queried data. Simple retrieval was discussed

in [Ref. 15]. More complex queries that support nested conditions and multiple selections

are presented in [Ref. 2]. For this thesis only, basic retrieval queries are used for

demonstrating the deletion and modification operations the on MDBMS prototype.

a. Retrieving Formatted Data

Retrieving formatted or standard data in the MDBMS is precisely the same as

in any other database management system. When media data is not involved in a query, the

user request is passed directly to INGRES. INGRES handles the request by retrieving the

information from a temporary table for the user to review and then returns the data by

erasing the temporary table.

b. Retrieving Unformatted Data

If the retrieved data contains a media attribute, the query is broken down into

multiple sub-queries to a level that the INGRES embedded SQL can decipher. It is divided

into two parts: one part involving standard data and the other part involving media data.

Each sub-query part is processed individually by either using the natural language parser

or by passing to INGRES directly. Both result with pointers to the qualified data. The

pointers are combined for accessing the corresponding standard and media objects.These

results that have been reconstituted provide the user with the final result for the given user

19

conditions. This is a difficult maneuver if a media image is actively part of the user request.

By outlining sub-queries so INGRES can handle them, the user request gets processed more

efficiently [Ref. 15].

5. Modification and Deletion Requirements in System Design

Because of the hardware configuration and the software used in the NPS MDBMS

prototype, special structures in both software coding technique and the storage data

structures are necessary. There are three areas to consider when describing the update and

modification portions of the database management. They are modifying straight standard

data, modifying media data with sound, and modifying media data with image.

Queries to standard data are passed directly to INGRES to process. No special

requirements come into consideration until media (unformatted) items are involved in a

query [Ref. 13, Ref. 15]. To process the multimedia data, some items must be repeated in

the catalog tables. This, unfortunately, can cause some inefficiency and inadvertent errors.

For updating the sound, a rerecording or rewriting of the description is permitted.

Each time the audio portion is pulled from the tables for a query, all the recorded sound file

segment attributes are revealed. These must be checked and can be changed. The

description and text that accompanies the actual audio in the MDBMS can be altered

without listening to the sound data. Rerecording the sound or changing the speed,

frequency, or other key attribute values does, in itself, change the present sound sample.

The media data of type image requires several preliminary steps before

combining the sub-query answers and reconstituting the final response to the users initial

request. The temporary tables and their use were touched upon earlier in this chapter in the

create table, insert, and retrieve sections. The concept of temporarily holding the user

supplied information until verification and then passing it to INGRES for the proper storage

are executed in the same manner for the deletion and modification processes. The

completion of the modification and update procedures provide the MDBMS users with a

total database management system. This MDBMS then allows the users the capability to

20

correct data errors already inserted in the database and remove superceded data information

stored previously.

21

III. MODULARIZATION

The modularization of the MDBMS prototype was performed by a team effort. As a

result of the joint work, the written discussion of the modularization is also joint. Hence,

this chapter also appears in total content in [Ref. 2].

A. DEFINITION OF MODULARIZATION

We used two software principles to assist in the development of the MDBMS

prototype: the concepts of modularization and version management. Both will be discussed

in this chapter. Modularization is a way to structure programs. It is called modularization

because the process is to break the program down into smaller parts called modules. A

module usually consists of a collection of related programming-language entities such as

procedures and data types. Modules are designed small enough to be understandable by

themselves thereby enhancing the clarity of the program. This is important to software

engineers and users. The different modules of a program are in relationed to each other

resulting in a module hierarchy. Modules on a higher level of the hierarchy use functions

or procedures of lower level modules. Large projects with numerous people working on

them prefer this method of programming since modularization lends itself to allotting each

individual their piece of the program in which to be creative without interfering with others.

For the version management, we used the Source Code Control System (SCCS)

provided by the UNIX operating system. A version manager is very beneficial in a

continual software project that will have people working on the programming long after the

original programmers have departed. The initiation of both modularization and version

management the increased efficiency in developing the MDBMS prototype.

B. REASONS TO MODULARIZE

There are principle reasons for modularizing a program. It makes the software

development process easier because modules are more understandable. A program which

does not consist of substructures is hard to understand. Dividing a program into modules

22

makes it easier to follow. The modularized programs are much easier to write as work can

be divided among a team of software engineers which reduces the time to complete the final

product. Modularizing also reduces testing time, as an established hierarchy aids in

developing a testing pattern. Testing of modules is easier than testing a program code

without any structure. Modules can be altered more quickly than an entire program if

changes and improvements are added. When the need arises to change the program code,

changing one or a few modules will be enough to get the desired result. When a new system

is to be built, it is possible to reuse modules of a previous system if the same or similar

functionality is needed in another program. In the following section, the advantages of

modularization is discussed in detail.

1. Comprehensibility

A program without delineated structures and substructures is difficult to follow.

Over time, it has been proven that modular programs possessing high cohesion and low

coupling results in easier-to-understand systems. A module is highly cohesive if the

functions and objects within the module are closely related to one another. Low coupling

refers to the manner that each module interacts with each other. The smaller or narrower

the interface is, the better the system. With the interface minimized, changes to one module

will not effect the entire system less those interfaces between that module are too great. A

module hierarchy allows the user to follow the program and see how the modules inter-

relate and to understand how each module effects the other modules.

2. Division Of Work

To complete a large task in a reasonable time, it must be divided among the people

participating in the project. This can be done using modules as basic units. When more than

one person is working on a program, dividing the work into modules increases the

efficiency in the production of the program. Each module given to a person of the project

should be small enough to be implemented within a relatively short period of time.

Programming team members can work independently on their modules. Each small part of

23

the program should run independently. This arrangement also makes the team work run

more smoothly. A team member is able to compile his work in shorter time periods.

Working modules appear more quickly, with completion of debugging modules in smaller

time increments. If the implementation of a module takes too long, then it is necessary to

break it into smaller pieces.

3. Easier To Write

Modules are smaller pieces of code to work with which means they are created

more quickly and implemented easily. The smaller parts are then built upon as a larger

section of related code. This modularized approach lends itself to work that can be divided.

By writing programs in parts, the testing takes less time and the program becomes much

more adaptable to change and discovery of errors.

4. Easier To Change

Change is a fundamental characteristic of software systems. Improvements in

software and hardware occur frequently and quickly. Users may ask for new features or

changes to old ones; the system may move to new hardware or a new operating system;

bugs may be discovered during testing; and/or performance measurements may show

bottlenecks. Costs of these changes can be enormous if entire programs must be rewritten

to meet the new equipment or software requirements. A modular format lends itself to

change with minimal effort. If better ideas for program functioning are incorporated in the

program, the modular structure allows interchanges of the units with minimal restructuring.

Changing a module instead of an entire system is less costly in may ways. The building

block formation can use general interfaces in order to achieve the connectivity necessary to

have the program run smoothly. Overall, to modularize is to achieve better quality

programs more efficiently and in less time.

24

5. Reusability

Another advantage of modularization is that some of the modules can be reused

with little or no restructuring of the base module. When you build a new system, you may

need the same functionality that you used in a previous system. An example is a module

providing advanced string or window operations. This module can be used without changes

for many applications. Instead of rewriting these modules, it saves much effort if you can

reuse modules of a previous system.

6. Easier To Test

Having smaller parts to work with facilitates debugging and testing of the

capabilities of the modules. In a large system, each module should be tested individually

and large collections of modules should be slowly built up to test the whole system. Since

modules are much smaller units than the whole program, errors can be found faster.

Debugging is the process of locating errors, defects, or problems that effect the outcome of

the module. Debugging often involves a lot of detective work. Testing is working the

system module by module for accurate and predictable answers. Testing has much broader

scope and usually assumes you have finished most of the debugging. Testing may uncover

problems which may lead to more debugging as the programmer may discover other flaws

in the software.

In addition to these advantages, a modular system provides other improvements

to software programming projects. Modularization can be used to achieve two basic

principles in systems development: information hiding and abstraction (or encapsulation).

Information hiding is the software designers decision to "hide" data structures and

operations that the user does not need to know. Some reasons for information hiding are to

prevent data structures details from being revealed to the user, keep algorithms that perform

operations from being shown, or protect the details of an interface to an operating system.

Information hiding and abstraction focus on different aspects. Information hiding focuses

on what to hide; abstraction focuses on what to reveal. Information hiding tries to protect

25

you from change you ask what design decisions might change, and arrange to hide them so

you cannot depend on them. The sorts of decisions one might hide include the algorithm

for carrying out some operation or the representation of some data structures. Other

examples are the details of an interface to an operating system or to special purpose

hardware, or the policy for allocating some resource ordering certain operations. Every

abstract data type is an information hiding module; however, a module may not be an

abstract data type. A module can also be a set of unrelated functions. An abstract data type

module provides a collection of procedures for manipulating the encapsulated data

structure. For example, a module might hide the representation of a stack. It would provide

operations for pushing elements onto a stack, popping elements off the stack, reading the

top element of the stack, and initializing the stack. These four functions are called the

interface procedures of the module.

C. HOW TO MODULARIZE

There are steps to follow in order to modularize a program or system. First, the major

sections of the design decisions and the sub categories located within those sections must

be identified. The major groups become the top levels in the generic module hierarchy. A

decomposition record is maintained that keeps track of the rearranging and regrouping of

the system into modules. This decomposition record is important. When the design

decisions call for information hiding, the decomposition record keeps track of all the hidden

information. Then the project secrets are accessible to software engineers. As mentioned

earlier, the size of a module should be manageable by one person. If the module is too large,

then it can be further divided into smaller parts. However, one person may have more than

one module on which to work.

The program structure is reflected by a module hierarchy. The module-hierarchy

shows the dependencies between the modules. The boxes represent the modules. A top-

down design displays relationships of the modules to one another by the line links or

connections. Figure 3.1 shows the dependencies of the modules. Module 1 calls three

26

modules on the next level of the hierarchy, Module 2, Module 3, and Module 4. They in

turn call on modules they are connected to on the next level down.

Moul 2Module 3 Module J,

Modules
2~u

SMo,.S 8 [Mod , e9 Module 10 Module I

Figure3.1 Generic Module-Hierarchy

Another document, entitled the module dependency document, defines the module

dependencies and a module hierarchy for a given system (see Figure 3.1). The system

module dependencies are shown by the line connections. The program document, after the

division process is complete, resembles separate modules. Now the dependency

relationship with other modules is identified. These are recorded as import and export

interfaces listed in the documentation of each module (see Figure 3.2). An import interface

is the listing of all functions called from other modules that are necessary to perform the

modules given task. The export interface consists of the functions provided by the module

in question. Figure 3.2 is an example of how each module in the hierarchy is structured.

27

module name

export interface

import interface

module body

Figure 3.2 Generic Module Structure and Format for a Module

export interface:- export <function 1>, <function 2>,..., <function n>;

import interface:- import <function 1>, <function 2>,..., <function i>;

from module <module namel >;

import <function 1>, <function 2>,..., <function j>;

from module <module name 2>;

import <function 1>, <function 2>,..., <function k>;

from module <module name m>;

module body:-implementation of the exported functions by using the

imported functions

(including not exported and hidden data structures)

functions

Figure 3.3 Example of Import-Export Preamble

28

D. MODULARIZATION OF C PROGRAMS

The MDBMS Prototype systems are implemented in the C programming language to

include the MDBMS prototype. Unique advantages and disadvantages exist with any

programming language and some of both will be discussed in this section. In C, there does

not exist viable support for the principle of modularization.

1. No Support For Modularization in C

The C-programming language does not support modularization. To write modular

programs in C, the code has to be subdivided into separate parts which are stored in separate

files. Because everything is listed in separate files, a programmer may perform separate

compilations or can use the include mechanism. Using separate files does not reflect a

modular structure as obvious recognition of where functions are imported from or exported

to is not biantantly displayed.

Other languages such as Modula 2, ADA or object-oriented languages like

Smalltalk or C++ do support the modular format better. However, these languages are not

available for use for the completion of this MDBMS prototype. Transferring an existing

program from one language to another is not a viable option as it creates great amounts of

overhead. Therefore, in order to achieve the advantages of modularizaLion, a ,on epk for

modularization in C was developed.

2. A Concept For Modularization In C

Organizing the program by dividing the data structures and functions in separate

files corresponding to their purpose gives some of the benefits as a program constructed in

a language that supports a modularized format. As mentioned before, C files can be

compiled independently and larger C programs can be divided into more manageable and

smaller sections to emulate the benefits of modularization. Similar functions, previously

separated, can often be condensed into more general, parameterized functions thereby

29

gaining clarity, uniformity, and reusability. Since C files can be compiled independently, it

is convenient to partition large C programs into smaller and more manageable parts to

achieve some advantages of the modularization concept. Independent compilation allows

files containing C program components to be checked separately for syntactic and semantic

errors. Moreover, when a program is modified, it is only necessary to recompile the

effected components. The Unix utility make is used to automate this process. This special

option make, is a recursive call to update files according to their dependencies. Make can

review all the separate files after one or more have been altered and define in which order

the effected files must recompile. the make utility is explained in detail in Appendices C

and D.

Another mechanism used to achieve some kind of C modularization is the include

mechanism. Arbitrary files can be textually included in a C program by means of the

include instruction. The capability to include files textually in a program allows common

constant, data, type and function declarations and definitions to be kept in separate files.

These common declarations and definitions can then be used in all parts of the program.

Keeping common declarations and definitions in separate files and then including them in

C programs is a popular style used for writing C programs. Examples are constant data,

type, and function declarations or definitions, and the standard input/output declaration file

stdio.h and math algorithms. As mentioned before, although the C language does not

support modularization, we can achieve the following advantages can be achieved by

dividing the existing program code into separate parts:

* Program modules can be developed independently.
* Changes to the program can be done by only changing single modules.
* Clarity of design and structure.
• Program code is easier to understand.
* Maintainability.
* Reusability of modules.
* Uniformity.

30

a. Similarities Between C and Modularization

Separate files of a program can be developed independently as can modules.

Having the program code in separate files, the program is easier to understand and provides

a better clarity of design than a program without any structure. The import/export

information contained in the files gives the impression of a modular hierarchy. As

improvements or changes occur in the program, single files or modules are all that are

effected. A revision of the entire program is unnecessary. Separate files are maintainable

and reusable just like modules. The uniformity of the files with the import/export interfaces

defined is another positive similarity to the modular format. Through the division of an

existing program code into separate files, C cannot fully support the modular format but

does possess some important characteristics of modularization.

b. Making Dependencies Between Modules Visible

To make the dependencies between the different parts of a modularized

program visible the export and the import interfaces have been added to the separated files.

In C, they should be put in the documentation header of each file. If all modules are

compiled separately, it is only necessary to recompile the module someone is working on

and link it with all imported modules to get an executable program. A list of all necessary

files used for the system should be available, making the module hierarchy visible. For each

file, the purpose and its place in the module hierarchy. Figure 3.4 shows the style of

documentation we used for the MDBMS. The export interface of the module shows the

functions that are called by other modules, which modules they are exported by and which

module this function is imported. The insertjtuple0 function is exported to the Delete.c

module.

The import interface displays the functions that are brought in from other

modules.C files can be used to partly implement data abstraction and information hiding.

An abstract data object, as defined in the previous section, is an object that can be

manipulated using only the operations supplied by the definer of the object. The user cannot

31

directly manipulate the underlying implementation of an abstract data object. Details of

how an abstract data object is implemented are hidden from the user. Hiding the details

prevents the user from: making programs dependent on the representation. The

representation of an aostract data type can be changed without effecting the rest of the

program. For example, the abstract data type set may be initially implemented as an array,

but this representation may be changed to an ordered list later on for storage efficiency.

Integrity of abstract data type objects is preserved by forcing the user to manipulate these

objects using only the operations provided by the designer of the abstract data type.

Examples of abstract data types are stacks, queues, sets, databases and binary trees.

However, a C file is not a true data abstraction facility, because it only partially supports

data abstraction. If you link an independently compiled C module to some other parts, you

32

can not prevent the user from accessing all functions and even the internal data structures

of other modules.

*********************** InsertModule.c***************************

Title: InsertModule.c
Author: Su Cheng Pei

Date: November 15, 1990
History :
Description : This module implements the insertion process in the Multimedia

Database System.

Export Interface:
print_alltableO :Prints out the table catalog information on the screen.
insert_tupleo :Inserts a tuple of a particular relation.
display-tupleo :Displays the tuple before insertion.
checkmedia-descriptionO:Checks the media description by connecting

to the parser.
qLinserttupleo :Translates SQL statement to insert a standard tuple.

Import Interface:
getsound..valueo :Gets a sound value of a media attribute from the user input.
yesnoanswero : Gets yes or no answer from the user.

from Userlnterface.c
check_tableuname0:Checks if the table name is duplicate.
get-rmedjinne0 : Gets media table name by appending table-key at the end of

attname.
from CreateModule.c

Figure 3.4 Export/Import Interface of a Module

E. MODULARIZATION OF MDBMS

The MDBMS prototype is implemented in the C programming language. The

majority of the original program was in a single file and was very difficult to follow. Three

students were working with the prototype. Considering the size of the program and that

multiple students were working on three different parts of the project, namely complex

query processing, graphical user interface, modify and delete, it was decided to modularize

33

the MDBMS prototype. Before beginning work on the modification and deletion sections

of the MDBMS, the program was first broken into large chunks of code in order to

understand how the program worked. When modularization of the MDBMS prototype was

begun, the module hierarchy was as shown in Figure 3.5 The existing program code into

separate files corresponding to their purpose. Then each part was divided again until the

final module hierarchy was obtained.

IMDBMSk

ISfunction

parser6 comprolog ISsubfunctions

di es.h e rors.h]

Figure 3.5 Existing Module-hierarchy

34

MDBMS

User Interface] Query Manipulatio Prolog Call

IS functions

Sh cVar hloj. Lh i

Figure 3.6 Current MDBMS Hierarchy

The resulting modular format is shown in Figure 3.6. The main program calls the

functions and routines imported from the modules to make the system operate.

Modularization of the MDBMS was not completed as we could almost spend the entire

thesis on modularization. Instead, we incorporated large basic modules containing related

functions and procedures. The MDBMS module hierarchy now consists of 6 levels. In

Figure 3.6, each box represents a module. For instance, the module 'MDBMS', wiuch is

the main program calls the modules 'Catalog Management','Create', 'Insert', 'Modify',

'Delete', and 'Retrieve'.In the diagram, the straight lines show the dependencies between

modules. Although the module 'MDBMS', which is at the first level of the hierarchy, calls

35

some of the modules on the third level of the hierarchy, the dependency is not shown on the

diagram.

There is, however, still much to do on modularization. Considering the time needed

to complete our parts the complex query processing and modification working on

modularization was stopped at this point. To make the dependencies between the different

parts of the MDBMS program visible, import and export interfaces were added in the

documentation header of each module (Figure 3.5). Functions that can be used by other

modules are placed in the export interface sections of each module. The export interface

therefore summarizes the functionality provided by a module. For example, the function

print all table() taking place in the export intertace of 'Insert' Module can be called by the

'Retrieve' Module.[Ref. 7]

In the hnport interface of each module, functions that are called from otier modules

are mentioned. For instance, the function get-sound-value0 taking place in the import

interface of 'Insert' Module, is called from the 'User Interface' Module. In addition to our

work on modularization, we also used some helpful tools provided by the UNIX system

were used, namely sees, lint, make, and dbx.

F. TOOLS USED WITH MDBMS

Some UNIX tools were used to improve the development of the MDBMS prototype.

The three presented are lint, dbx and the SCCS version manager. The fourth, make, is

discussed in Appendices C and D of this thesis.

1. Lint - A Program Checker

Lint is one of the UNIX operating system utilities. The lint command is

incorporated in the make file of the MDBMS program to automatically assist in the

debugging and discovery of the prescribed errors. Lint attempts to detect features of C

program files that are likely to be bugs, non-portable or, wasteful. Lint performs stricter

type checking than the C compiler. It runs a preprocessor as its first phase which allows

certain questionable code to be altered or skipped by lint. Its second pass checks the files

36

for compatibility and consistency. Some of the main items lint manages to find are unused

arguments and variables, inconsistent function calls, and ignored function returns. During

the compilation of C programs, lint helps to find unused arguments, unused variables,

variables which are set but not used, inconsistently used function calls, and always ignored

function returns. The lint command was put in the Makefile so that during compilation, lint

is invoked automatically by the Makefile. The make utility, which is a command generator,

is explained detail about 'make' and its use in Appendices C and D.

2. DBX -A Debugger

DBX is a utility for source-level debugging of execution of programs. Run time

errors during the execution of a program can be found using dbx. To run dbx, type "dbx

<executable file name>". To run the program in dbx, type "run". dbx. Dbx is a source-level

debugger. One of the options of dbx is the trace command.To trace in a function, type "trace

in <function name>". This allows a user to run the program and trace in a function that may

not work properly. This tool was used to find some run time errors during execution of a

program.

3. SCCS -A Tool for Version Management

Another item that is very important to team programming is the use of a version

manager. We chose the Source Code Control System (SCCS) provided in the Unix system

which possesses various utility programs to allow more than one version of a file.

Programmers have access to the latest version or return to any previous version of a

module. All changes are stored as a new version number and can be accessed at any time a

question may arise about the changes in a program module or procedure. Using the SCCS

worked well for this project, as each of the team members had a stabilized version of all

modules except the one(s) that the individual was modifying. If you want to try another way

to implement a module, you can work on a version of that module while you still keep the

older versions. You can always go back and work on any older version you want. As I

worked on the modification portion of the MDBMS, I maintained a copy of a retrieve

37

module that performs basic retrieval operations. Other team members were able to continue

to improve upon the existing retrieval module without interfering. I could also test another

way to code the modify operation and work on it but still have the older versions.

SCCS is ideal for team projects that require access to overlapping code and

historical changes. The cataloging is very accurate, easy to use, and quite space efficient

for database storage as only the changes are saved with each version that is created and

stored. To use the SCCS, a directory must first be created and given the name SCCS. Files

must already exist that you want to start version managing. Some basic commands for use

of the SCCS are create, delget, edit, prs, info. Examples of how to use them are shown

below. To create the initial version of a file, one must type "sccs create <filename>" at the

prompt. You should not be in the SCCS directory at this time. If you want to work on this

version and still maintain a pure copy, then the command "sccs delget <filename>" is what

should be used. What you have done is created a version number for the initial version and

set up another copy of that version for editing. It is not available for editing until the

command "sccs edit -r<version number> <filename>" is typed. The version number is

shown when a delget is started. The -r option is used in case the desired version is not the

latest version. The "r" stands for revision. An example of editing a previous version is if I

want to edit the InsertModule.c version 1.6.3.4. I would type "sccs edit -rl.6.3.3

InsertModule.c". To see how many versions of a particular module exist,.the command

"sccs prs <filename>" is the way to access that information. The command "sccs info"

shows exactly which versions of all files are currently being edited.

38

IV. DELETION IMPLEMENTATION

My ideas for solving the deletion problem began with designing and/or enhancing

functions and procedures that are compatible with the currently working modules and

procedures in the MDBMS system. The MDBMS prototype architecture outlined in

Chapter II and modularization discussed in Chapter III were the first steps towards building

a complete system. Three students commenced work to complete the basic operations of

the MDBMS operations not currently implemented and to enhance the quality of some

prototype operations already running. We continued to modularize, incorporate complex

query handling, modify the user interface, and develop the deletion and modification

operations [Ref. 2, Ref. 15].

My design makes use of existing data structures and implementations for some of the

underlying retrieval operations. Additional data structures to capture the necessary user

information are found in the modification operations for the formatted and media data. By

working with the existing structures, integration of my procedures into the MDBMS was

less cumbersome. An overview of the design, discussion of the implementation, and

examples of the deletion operation are in the following sections.

A. INTRODUCTION

Design issues for the modification of information stored in the MDBMS were first

discussed in 1988 when INGRES was the DBMS chosen to build the MDBMS. The catalog

management system is very important for all these major operations in the MDBMS

prototype. The restrictions with the INGRES version to implement the MDBMS prototype

have been mentioned in Chapter II. Newer versions of INGRES have eliminated some of

the restrictions; however, all the prototype code would have to be rewritten in order to work

with a newer version of INGRES. The SUN corporation improved its SUN workstation.

Current SUN models directly support sound functions. The prototype source code would

need restructuring and substantial recoding if the new hardware and software were

39

purchased. Instead of making these investments, the original configuration of the prototype

with an IBM PC as a backend server for sound data management in the MDBMS, would

continue. The IBM PC is connected to the SUN workstation via the local area network,

ETHERNET [Ref. 1]. The constraints of the hardware structure and the older versions of

the software due affect the design and implementation of the deletion procedures. However,

since this is only a prototype system and not one for the commercial market, my work was

to complete the deletion and modification portions of the current system structure with its

current design. The principles involved with these operations can be demonstrated on this

prototype without the costly upgrades.

1. Why Deletion Operations are Important

Deletion of outdated or no longer needed information is one of the basic processes

expected in every database management system. In order to perform the deletion operation,

the user must already have created a table (i.e., defining the relations), inserted some tuples

of data and stored that data within the database. The user can now remove any extraneous

data by means of a deletion operation. A retrieval of the tables or files where the

information is stored is first performed. This is executed based on the user's requirements

and the relational conditions placed on the database retrieval system. After the conditions

are provided, the database searches for the given conditions. Once the data are retrieved,

removal occurs. An in depth, step-by-step example of removing media and formatted data

in the MDBMS is found in Section C of this chapter. Formatted data removal is the easiest

method of deletion to perform. A method to remove media data in the multimedia systems

is more complex to remove for a database because of the storage requirements. For

deletion, use of the integer table key and the integer value of the media type provide the

user with the ability to access the proper media table during the execution of the procedure.

2. Schema of Database Relations

The MDBMS database relational schemes are examples of a practical way to store

information about a U.S. Navy fleet. Records maintained on the ships, weapons, officers,

40

missions of the ships, and ship homebases are common items that must be accounted. The

information stored in the database on the objects listed above are shown in relational form

in the Figures 4.1 through 4.3. For a ship, the name, number, type, year it was built,

displacement, current mission, captain and executive officer are important pieces of

information to access. For a record on weapons, the name, type, range, power, and

description are key items to store on weapons. Officer files are another set of files that

should be stored in a fleet database. The officer name, rank, identification number, salary,

reporting year date, along with a current photo and recording of his voice are items the fleet

should have available for review. Base ship home ports listed by name, location and size

are other key pieces of information. Mission assignments with the directions, goal and task

outlined provides the fleet an accounting of the total area of involvement for members of

the fleet at any given time. See Figure 4.1.

The primary keys are user defined and indicated by the underlines. The media data

types are the abstract data types defined in the MDBMS prototype. Each media attribute

has an integer associated with the location of the separately stored media relation. As

described in chapter II, media objects are created and stored as the media data types image

and voice. These media relations are not visible to the user. Ship is the first relational table

created in the MDBMS. An example of how the media storage table is created for the SHIP

relation is as follows the table key for ship is "1" as it is the first table in the database. The

media relation table for the ship photos is called PHOTO1 to correspond with the SHIP

table key number "one". In Figure 4.2, the media image attributes added for each SHIP

tuple relation are placed in the created media table PHOTO 1. For each of the ship tuples

that contains an image attribute, it is stored in the media image table PHOTO1. The image

identifier (i-id) which is an integer acts as index. The i_id for each media relation will

indicate where the particular SHIP image is stored. The WEAPON table is the third table

in the database; hence, PICTURE3 media relation table is created for the weapon relation

pictures. Another example is the fourth table in the database is OFFICER. The two media

relation tables created for the OFFICER.photo and OFFICER.voice are media tables

41

PHOTO4 and VOICE4 respectively as shown in Figure 4.2 and Figure 4.3. Figure 4.3 is

used to explain the design and implementation of the deletion process.

B. DESIGN AND IMPLEMENTATION OF DELETE

The key to the deletion and modification procedures of the MDBMS is to understand

how each of the different tables are located and manipulated. Gaining access to the relation

conditions is simpler in theory than in practicality with the MDBMS configuration. Data,

SHIP

sname Lsno type Iyr..rbuilt disp mid b id cat id exoid photo

SHIPWEAPON

WEAPON

typeJfirerange I powef picture

OFFICER

I o_nameI rank salary repyr photo[voice

MISSION

" m name I direction goal task

NAVY-BASE

b-name location I size

Figure4.1 Navy Ship Database Relational Schemes

once stored in the system must be retrieved, stored in a temporary location, manipulated,

and then the final, newly acquired resultant data returned to the original table in the

42

database system. Some code revisions to get the deletion process operating are given in

section C.

PHOTO1

iid (id descrp height width depth

PICTURE3

-idIf-id descrp height* width] depth~

PHOTO4

L-id_ fjd~ descrp heigt width Idepth]
VOICE4

fsjd f i descrp size samp-rate encoding duration resolution

Figure 4.2 Media Relation Schemes for Navy Ship Media Attributes

Some of the procedures require user supplied conditional information. This user

information sometimes must be restructured so that INGRES can perform operations in

formats that INGRES can manipulate. The work began with methods to delete formatted

data. This is the easiest type of information to delete, as it is in conventional coding format.

Because formatted data is handled in a data type directly accepted by INGRES, formatted

data can be retrieved, deleted, and the table reconstituted for storage in the database with

minimal effort.

With the aid of Figure 4.3, we will talk through the insertion, retrieval and deletion of

data for the table relation OFFICER. The table contains the attributes ojid (integer),

o-name (character 20), rank (integer), salary (float), rep-yr (integer), photo (image), and

43

voice (sound), created during the initial execution of the create table operation [Ref. 14].

INGRES separates the creation into three parts to set up the relation OFFICER, one for the

formatted Officer relation, one for the image media relation and one for the sound media

relation. These are shown in Figure 4.3. The suffixes on the media tables have been

explained earlier. The input data to the attribute photo and voice in the OFFICER relation

are integer type and are used as the indexes to the iid of the PHOTO4 relation and the sid

of the VOICE4 relation respectively. Data for Jeff Kulp is added and the values stored

temporarily in the data value arrays prior to INGRES insertion. He is the first entry in the

relation OFFICER. When the user prepares to insert a media data attribute value, the image

or sound filename must be input at this time. In the case of image, "n/virgo/work/mdbms/
gif/jeff.ras' is typed into the system. The system inserts that filename into the field f id of

the relation PHOTO4 which represents the media attribute photo. All the data pertaining to

the file, height, width, depth, are extracted from the header file and inserted into the relation

PHOTO4. The i_id index is assigned (which is I in this example) and then the iid index

number is placed in the relation OFFICER photo attribute column. The system inquires as

to the description of the photo which is "big head". This is inserted into the "description"

attribute column of the relation PHOTO4. The same operation occurs for the sound

relational data.The sound filename, '/n/virgo/work/mdbms/snd/jeff', goes in the fid of

relation VOICE4. The user gives the description of the voice as "slow voice" which is

inserted. Once inserted, the data remains in the database management system until it is

deleted. Other tuples are inserted in the same manner. An understanding of the retrieval

process must occur first to understand the deletion operation. Examples of the retrieval

operation and MDBMS deletion processing are now presented.

1. Retrieval of Information for a User Query

Simple queries designed and implemented by Pongsuwan [Ref. 15], are reviewed

since it is the first step of deletion. I built the deletion operation on the existing retrieval

process created by him. After completing the deletion and modification operations, these

44

were joined with the work of my companion and can now process complex query

modification and deletion. Retrieval by the user issuing query conditions to the MDBMS

is accomplished via the main menu. The MDBMS retrieves the user data requirements as

specified and places them into temporary structures that are mentioned in Chapter II. At this

point, the user is shown the data to ensure that the data retrieved meets the criteria the user

stated. Each set of formatted data and the attached image or sound redia data, as

applicable, is displayed tuple by tuple. The user is asked if he wants to see the media data

of the parent relation. The tuples will be displayed in the order they are retrieved from the

database. If the user wants to see the photo or hear the voice from the fourth tuple meeting

the conditions, he is not able to alter the previewing order in the MDBMS prototype

configuration Pei designed [Ref. 14]. In the current implementation for complex query

processing Aygun [Ref. 2], the user is given a choice as to the order of the tuple media

picture data he desires to see first. He will also have the option of which voice he wants to

hear. This more user friendly style allowing the user to choose is the contribution of Aygun

[Ref. 2] to the prototype. Also in [Ref. 2], additional operations such as nested queries and

aggregate functions - in, max, in, intersection, and union - have been added to the prototype.

Understanding the temporary table functions was the first step for construction of

the deletion and modification operations that include media. First, I had to learn what

INGRES precompiled code results are produced when user query conditions are expressed.

To work with precompiled code, I logged directly into INGRES (shown in the Appendix)

and created small database operations for INGRES to manipulate. Some of the INGRES

precompiled commands are in Chapter V. As mentioned, the user must retrieve the tuples

from the tables first in order to remove the items based on user conditions. To illustrate this,

we will query the database for a formatted example of retrieval and then retrieve data

including media attributes. In the first query, we want to see the name and rank of the

officers who reported in 1990 from the OFFICER relation. In the second query, we want to

view the officer's pictures, hear their voice and see their names from the OFFICER relation

when the officer's reported in 1990 and has the voice description "slow voice".

45

Relation name OFFICER

oJ i o-.name rank salary rep..yr photo voice

100 Jeff Kuip Capt 10,000.00 1990 1 1

101 Fred Pong Cdr 8500.00 1988 2 3

102 Vince Lum LCDR 8000.00 1989 3 4

103 Mary Green LTG 7200.00 1991 4 5

Relation name PHOT04

i-id Lid descrp height width depth

8
1 /n/virgofmdbmsfgiflJeff.ras big head 640 480

2 /n/virgo/mdbms/gif/fred.ras green eyes 640 480 8

3 /nlvirgo/mdbmns/gif/plum.ra smnall nose64 488

4 /n/virgo/mdbms/gif/Mary.ras brown hair 640 480 8

Relation name VOICE4

sjd f id descrp freq sampl resol encod

1 /n/virgo/mdbmsfsnd/jeff slow voice 10 10 10 4

3 /n/virgo/mdbmns/gif/fred high voice 10 10 10 4

4 /n/virgo/mdbms/snd/vince strong voice 10 10 10 4

-5 /nlvirgo/fndbms/sndlmarv weak voicel 10 10 10 4 o
Figure 4.3 Media Relation Schemes for Navy Ship Media Attributes

46

Since the retrieval operations have been summarized in Chapter II, I will

concentrate on the actions surrounding the temporary tables and the removal of the data

from the MDBMS database.

a. Formatted Data Retrieval Operation

Examples to illustrate retrieval of formatted data are shown below.

Formatted QUERY 1:

What are the officers names and ranks that reported in the year 1990?

The SQL equivalent statement for this query is written as follows:

SELECT: o-name, rank (which attributes are wanted)

FROM: table (which relation table is the information coming from)

WHERE: officer.rep.yr = 1990 (condition)

Because this query contains only formatted data, it is passed directly to

INGRES to retrieve the result. The result is placed in a temporary table away from the

stored data and then displayed for the user to review.

Another example of formatted data retrieval:

Formatted QUERY 2:

What is the captain's name on the U.S.S. Elliott?

The SQL statement for this query is written as follows:

SELECT: oname

FROM: ship,officer(two tables are necessary to process this query)

WHERE: ship.s name = "Elliott" and ship.captid = officer.oid.

Again, this is an example of a query that contains only formatted data. The

query is passed directly to INGRES to get the result.

b. Media Data Retrieval Operations

When media data is included in the query, the query is decomposed into two

parts as mentioned in Chapter H. The first sub-part is of the formatted data and is sent

directly to INGRES for processing as shown in the examples above. The media data sub-

47

part must be handled separately and the two sub-part results reconstituted into the final

result. The user only sees the recomposed final result. Sample queries with varied holdings

are shown below.

Media QUERY 1:

What are the names of the officers to see their photos and hear their voices if

they reported in 1990 and have "slow voice". Show the officer photos that meet the

conditions and play the voices.

The extended SQL statement for the query is written as follows:

SELECT: o-name, picture, voice

FROM: officer

WHERE: officer.repyr = 1990 and officer.voice(CONTAINS, "slow

voice");

The decomposition of the query is listed below:

CREATE TABLE T1 as: (temporary formatted data table)

SELECT * (all)

FROM officer

WHERE officer.rep_.yr =1990;

CREATE TABLE M1 as: (temporary media data table)

SELECT s_id

FROM VOICE4

WHERE VOICE4(CONTAINS, "slow voice");

CREATE TABLE RESULT as:

SELECT oname, picture, voice

FROM TI, M1

WHERE T I.photo = M 1.iid

The final result is in an INGRES relation. This result of the officer names, the

officer photo and hearing the officer voice are what will be seen by the user.

Media QUERY 2:

48

Find all ship weapon names where the ship has "gas turbine engine" in the

photo description.

The extended SQL statement for the query is written below:

SELECT: w-name

FROM: ship, ship-weapon

WHERE: ship.photo(CONTAINS, "gas turbine engine") and

ship-weapon.sno = ship.s-no.

The decomposition of the query into sub-parts is listed here:

CREATE TABLE T1 as: (temporary formatted data table)

SELECT *

FROM: ,-hip, shipweapon

WHERE: shipweapon.sno = ship.sno.;

CREATE TABLE M1 as: (temporary media data table)

SELECT iid

FROM: ship

WHERE: PHOTO 1(CONTAINS, "gas turbine engine");

CREATE TABLE RESULT as:

SELECT: wname, photo

FROM: TI, MI

WHERE: T1.photo = Ml.i_id

The INGRES operation of cursoroutput is executed to process these queries.

Cursor_output retrieves the result table data one tuple at a time and displays it to the screen.

If media data is part of the RESULT table, then the tuple corresponding to the iid and or

s_id in the result table are retrieved from the media relations. The media data is displayed

or played following the corresponding formatted data. The cursor-output format is shown

below. See Figure 4.4. The cursor is initiated. The system retrieves everything from the

result table and then retrieves the media identifiers (i-id or sid) from the remitted data

table in order to retrieve the media data.

49

EXEC SQL CREATE CURSOR cursor-output AS

SELECT * (all)

FROM RESULT

EXEC SQL FETCH CURSOR cursor-output;

print formatted data;

EXEC SQL CREATE CURSOR cursor-output AS

SELECT media data

FROM RESULT

EXEC SQL FETCH CURSOR cursor-output

display pictures;

play voice recordings; (not applicable for this example)

Figure 4.4 INGRES Pre-Compiled SQL Code

2. Approach to Deletion of Data from the MDBMS

As outlined in the previous section, the retrieval of the data to be deleted is first

gathered based on the user specified query and the result is placed in a temporary table. The

data is then displayed to the user before the temporary table of information is destroyed.

What the user does not see going on in the delete operations is the matching of the database

data to the temporary table data. When a tuple in a relation is to be deleted, not only the

tuple in the relation must be deleted, but also the tuples in the media relations, if any, must

be deleted as well. The SQL commands to delete from the actual relational data tables

where the stored data matches the temporary result must be generated. The process of

removing the temporary table is the last step in the deletion operation. INGRES embedded

SQL calls this process "dropping" the table.

Initially to get the deletion operation to work in the MDBMS, a switch statement

was used in the retrieve module. The retrieve module does half the work of the delete

operation as it recalls the information the user no longer wants to store in the MDBMS.

50

After retrieval, the switch to deletion of this retrieved data, incorporated in the main retrieve

process, completed the second part of the process. This technique of reusing portions of the

retrieval code is an example of modularization and its benefits. The switch permits the

retrieval of data to take place during execution of the retrieve operations as indicated from

the main menu in db. It allows the execution of the deletion procedure when that mode is

indicated by the user selecting deletion from the main menu. As seen in the code, execution

of the retrieval operation occurs first. The results are displayed to the user. The temporary

result table that stores the formatted data is then compared with the actual data stored and

once the match is made, the media data is located in the actual storage area and tagged.

Once these matching operations are complete, media data is deleted from the original table.

The formatted data is then removed from the actual database and the temporary table is

removed.

a. Main procedures for the Delete Operation

The actual operations for the deletion procedure is selected from the main

menu are as follows:

retrieve (DELMODE): The main retrieval module is executed to retrieve the user's

query conditions. The mode statement flag, DEL-MODE, is passed in the functions for

execution of the eventual deletion of data.

table_cursor = tableentryo: This sets the pointer to the table where data will be

deleted.

get_all_attsof_a..given_table0: This function retrieves all the attributes of the

tuples that meet the user specified conditions.

qLretrieve(RTRVEMODE):The retrieval process occurs in this function. Here

other procedures are called to locate the media data if it is involved in the query.

ql-print-delete-data:This procedure matches the data stored in the database to the

data in the temporary table. Then other sub routines such as get rid image and

get rid sound, are called to remove the media data from the database.

51

ql_retrieve(mode): Using the delete mode this time, this procedure will execute the

deletion of the formatted data that matched the temporary table conditions the user wanted

removed.

dropjable(tempable): INGRES command to remove the temporary table created

to hold the to-be-deleted data.

The qlprint deletedata is the procedure where the comparison is made.

This procedure in turn calls the procedure get ridimage or getridsound if media data is

included. If not, then these operations are bypassed and the retrieve operation is called

again. This time, the delete mode to delete the data stored in the actual table invoked. The

temporary table is "dropped" as specified in INGRES SQL fashion. I was able to make the

switch statement work once I had an understanding of how to modify the SQL commands.

In Appendix A, the Retrieve module shows the code with implementation of

the deletion operations incorporated with an "if' statement where a switch statement was

initially tested. Each of the INGRES precompiled commands within the procedures are

differentiated by their synchronization characters. For the INGRES precompiled command

of retrieve, the synchronization is "0". For delete, the synchronization character is "1", for

insert the character is "3,"and so forth. A way to identify precompiled commands is by

locating commands beginning with the "II". All INGRES embedded SQL precompiled

commands have the '"'I" characters. Examples are '"'lwritedb("=") and "IlcsrQuery((char

•) 0)". More precompiled code examples will be in the A and B Appendices.

b. Testing Methodology

Once the switch mode was integrated into the retrieve module code, trial

executions of a simplified user conditions delete began. The first runs dealt with only one

tuple of strictly formatted data. When several variations of the one formatted data tuple

worked, we then tried the next level of increased media data processing difficulty. The

query was modified such that more than one tuple would meet the user criteria. Another

52

pointer to loop through the database looking for more than one tuple matching the user

query was required. As the pointer looped through to find matches to the query, the

accountability of the cursors and pointers gained attention. Several counters to maintain

record of the pointers pointing to data stored in the INGRES database management and

counters for the cursors to the data in the temporary tables were required.

Once the delete operation for multiple formatted tuples was working, then the

obstacle of the one tuple with one media type was next. The operation to delete one tuple

of formatted data with one media type image is as follows: first the same retrieval

operations had to occur to get the table name and conditions from the user. Once the desired

table was retrieved, a check for media data was performed. If media data is included, then

the relation table key is found and the media relation table is located by using the table key

and the media iid for image or sid for sound data. The media data that meets the specific

query is deleted. After the media data is removed, then the formatted data is then deleted.

This process is repeated and extended to handle an increasing number of tuples possessing

one media attribute. When the formatted tuple with one media works for either voice or

image, testing returns to just one tuple containing two media attributes. Successful two

media data in one tuple test leads to creating another looping mechanism for more than one

tuple with two media attributes. This configuration is similar to the one used for the

multiple tuple formatted data case. Media tables stored as abstract data types are handled

in such a way that the user is unaware of the separate tables accessed when deletion is

called.

C. USER INTERFACE EXAMPLE

When the user wants to delete some information already residing in the database, the

user must first select the "Delete" option on the MDBMS main menu. The database will

prompt the user with line by line commands and instructions for manipulating the data in

the database. These instructions will continue to process the user's query step by step as

appropriate responses are provided by the user to each database operation. The retrieval and

53

deletion of the first query example will be processed as shown on the screen of the

MDBMS. User responses are shown in the cursor encased (<>) italic bold type. The initial

screen below shows the main menu of the MDIB FS prototype.

Multimedia Database Management System

1. Create Table
2. Insert Tuple
3. Retrieve
4. Delete
5. Modify
6. Print out current data information (test purpose)
0. Quit

Select your choice: <4>

Here is the main menu from the MDBMS that is shown on the screen. The user must

select the Delete operation and then hit a carriage return <cr> to continue the operation. The

following is the response to the formatted data only query of "List the ships in the database

of type 'carrier' ?"

Your Selection is Delete!

1. Retrieval Conditions - Input Phase

The user is requested to enter a temporary table name to store the results of the

query while it is being processed by the MDBMS. After providing the temporary table

name, the user is asked in which table inside the MDBMS he wishes to remove data. The

conditions, if they exist, for specific attributes in the chosen table are next requested from

the user. If there are more conditions that are expected to be boolean "and" together, then

the group condition query needs a <"Y" > from the user.

Hit return to continue (any other key to QUIT)

54

Enter a table name to hold the temporary result of the query: <demo-table>

Select the table(s) separated by commas <,>:(<?> for HELP!)

SELECT TABLE(S): <ship>

Any condition? (Y/N): <Y>

Group Condition? (YN): <N>

Enter the attribute name: <type>

Enter the Condition: <= "carrier">

2. Execution Phase

The checks of a repetitive table name and if the table and attributes given by the

user already exist in the database are performed. When all the data provided is correct, then

no error statements occur. If the table is not correct or the data given for the attributes does

not exist, an error message is returned to the screen. The following was executed as the

table and attribute critierias were found.

Searching

WHERE = "carrier"

wait...

There are 2 records that match the delete query:

record id 1 name: Elliott

record id 2 name: Ticonderoga

The following photo has been found:

Number: 1

Description:

55

<<large ship with many weapons.>>

Record no 1 filename: /tmp_mnt/n/virgo/work/mdbmsfMDB MSI

91133.19734

Do you want to see the photo? (Y/N): Y

Show image...

****(Photo is displayed on the screen if user types in Y)**

Record no 2 filename: /tmp mnt/n/virgo/work/mdbms/MDBMS/

90206.30421

Do you want to see the photo? (Y/N): Y

Show image...

****(Photo is displayed on the screen if user types in Y)**

Do you want to continue to Delete? (Y/N): Y

media data matching the query is being deleted from ****picture 1*****c

data is being deleted from ******SHIP*****

(return to the main menu) **

As stated, the above query execution handled only formatted data, the next

example has the media data included in the query.

The above is what the user sees on the screen for the query of ships of type

carrier. The following query example is the illustration of the operation from an internal

view.

1. CREATE TABLE F1 AS

SELECT s-name, photo

FROM SHIP

WHERE ship.type = "carrier"

2. CREATE TABLE M1 AS

SELECT i_id

FROM PHOTO1

56

WHERE (Fl.photo = Ml.iid)

3. CREATE TABLE RESULT AS

SELECT all

FROM FI,M1

4. MATCH TABLE RESULT AS

SELECT all

FROM SHIP, PHOTO1

WHERE ship.attribute = result.attribute AND photo 1.i_id - result.i id

5.DELETE TABLE PHOTO1

WHERE RESULT.i_id = PHOTO1.i_id

**(all items in the result table are those media values meeting the user

conditions)**

5.DELETE TABLE SHIP

WHERE RESULT.attribute = SHIP.attribute

**(the items here are all the formatted values in the tuple that meet the user

conditions)**

6. DROP TABLE RESULT

(removes temporary table)

Query example 2:

This example will show how the MDBMS handles the media data. The sub-

parts remain transparent to the user and the final result is displayed for the user prior to the

deletion procedure. More than one table may be accessed to get the relations for the user.

The functions and procedures that make the delete operation work are outlined in the

previous section. The steps are the same as in the first example except for the handling of

the media portion of the query. The actual media operations are not shown. The query is

"Display the officer of the ship USS Elliott who has a photo description 'He has big

head'?".

57

Multimedia Database Management System

1. Create Table
2. Insert Tuple
3. Retrieve
4. Delete
5. Modify
6. Print out current data information (test purpose)
0. Quit

Select your choice: <4>

Here is the main menu from the MDBMS that is shown on the screen. The user must

select the Delete operation and then hit a carriage return <cr> to continue the operation. The

following is the response:

Your Selection is Delete!

Enter the table name to hold the temporary result of the query: <demo jab/e>

Select the table(s) separated by commas <,>:(<?> for HELP!)

SELECT TABLE(S): <officer, ship>

Select the attribute(s) separated by comma <,>:(<?> for HELP!)

(Hit <ESC> for no attributes) <oname>

Any condition? (Y/N): <Y>

Group Condition? (Y/N): <N>

Enter table name: <ship>

Enter attribute(s): <name>

Enter Condition: <= "Elliott'>

Enter table name: <officer>

Enter attribute(s): <o_id>

58

Enter Condition: < oid = ship.capt_id>

Enter table name: <officer>

Enter attribute(s): <photo>

Please enter your query description

*noun phrases separated by commas and end with an exclamation mark

*sentence end with a period.

(end whole description with an empty line);

he has big head.

Searching....

There are I records that meet the delete query.

record id 1 oname: Jeff Kulp

Record no 1 filename:/tmpgmnt/n/virgo/work/mdbms/MDB MS/

91133.19734

Show image...

The following photo has been found:

Number: 1

Description:

<<he has big head>>

Do you want to see the photo? (Y/N): Y

(Photo is displayed on the screen)

sound management

Record no I

Play the sound? (Y/N): Y

(Sound is played for the user)

59

Do you want to continue to delete? (Y/N): Y

media data matching the query is being deleted from ****photo4*****

media data matching the query is being deleted from ****voice4*****

data is being deleted from ******OFFICER*****

(return to the main menu) **

If the user desires to see and hear the media data types that will be removed,

the user may display the photos and play the sound. The main menu is then re-displayed

with the basic database management options as the deletion operation occurs in the

background. The user can then re-display the table he just altered to verify the operation

deleted the data as planned. The above is what the user sees on the screen for the query of

ships of type carrier. The following query example is the illustration of the operation from

an internal view. Notice that more temporary tables are created as the query becomes more

complex.

1. CREATE TABLE F1 AS

SELECT captid

FROM SHIP

WHERE ship.name = "Elliott"

2.CREATE TABLE F2 AS

SELECT all

FROM OFFICER

WHERE oid = shFl.capt-id

3.CREATE TABLE M1 AS

SELECT i_id

FROM PHOTO4

WHERE CONTAIN(PHOTO4, "he has big head")

4CREATE TABLE RESULT AS

SELECT all

FROM FIF2,M1

60

WHERE (Fl.captid = F2.ojid) and (F2.photo = M 1.iid)

5. MATCH TABLE RESULT AS

SELECT all

FROM OFFICER, PHOTO4

WHERE officer.attribute = result.attribute AND photo4.iLid = result.i id

6.DELETE TABLE PHOTO4

WHERE RESULT.i_id = PHOTO4.i_id

**(all items in the result table are those media values meeting the user

conditions)**

7.DELETE TABLE SHIP

WHERE RESULT.attribute = SHIP.attribute

**(the items here are all the formatted values in the tuple that meet the user

conditions)**

8. DROP TABLE RESULT

(removes temporary table)

The deletion procedure is the second in the three phases of modification. Retrieval

being the first, deletion the second and the execution of the actual modification the third

step in the process. Chapter V will cover the modification procedures beyond what has been

presented in these first four chapters.

61

V. MODIFICATION METHODOLOGY

Solving the modification problem began with designing and/or enhancing functions

and procedures that are compatible with the currently working modules and procedures in

the MDBMS system. The modularization process discussed in Chapter III of this thesis was

the first step. The MDBMS prototype left by Pei and Atila when they completed their work

provided ample room for improvements and completion of the system. Aygun and I

commenced work on the completion of the MDBMS areas not currently implemented and

improved some areas already in the running prototype. My design ideas were to t data

structures used in current management systems for implementation of the retrieval module

and to design additional data structures necessary to capture the user information required

for processing and modifying formatted and media data, such as image and sound, if they

existed. I made use of the existing implementations, whenever appropriate, for some of the

operations to update the data. Extension of the user interface in the existing MDBMS

allows for modification of the various data already stored in the MDBMS.

A. INTRODUCTION

Conventional database management systems have modified standard data for some

time. The modifying media data types in the MDBMS provide many researchers the

opportunity to discover the ideal method. In the MDBMS prototype, the media data is not

placed in a temporary storage structure as the standard data is stored. Media data types are

tabbed in their original storage table. If a tuple that possesses a media type is modified, the

new media portion is added to the appropriate media table, be it photo or sound. After the

newly modified data has been entered, then the sid and iid of the original tuple data is

removed from the parent table. The data actually is a new tuple relation in the database in

regards to the media portion even if the media data is not altered. This technique is designed

based on the original structures that Pei created in his insertion operations. The internal

catalog system creates new numbers for each new photo imputed.

62

1. Why We Need a Modification Option

The modification steps are needed because most users are human and make errors

when entering data. Another reason is to have the capability to update and modify the

existing data is the data continually changes. The fleet database is a living document that

continually changes as the area of the home base for many ships and military installations

close with force reductions, captains are transferred or retire, ship numbers change as force

realignments occur, and newer weapons systems are retrofitted on older ships. These are

only a few occurrences of why military business applications and complete database

management systems require modification options to the data after it has been stored.

2. How modification works in general

The steps used in the modification construction process are first obtain the data

using the retrieval operations described in previous chapters, and second, to use similar

modification procedures as those Pei designed to modify data in the insert operation. This

way, the re-thinking of pre-compiled INGRES code is minimized. The media data presents

some unique problems as the catalog management system generates sequential numbers for

each attribute of every tuple when they are first inserted using Pei's functions. Finding the

proper way to alter the Pei data structures or to create similar ones that are compatible with

the other Pei designed modification procedures became the focus of the operation of

modifying already stored data.

3. Design Issues for the Information Storage in the MDBMS

In the prototype construction of the update operation, [Ref. 14] there exists a

modification call for data that has not been inserted into the database yet. This data has not

been placed in the INGRES system but is stored in temporary arrays. Pei arranged to query

the user for changes before the data becomes stored in the INGRES tables. The difference

in a modification operation on data already stored in INGRES and data just being added to

the database lies in the handling of the data in the temporary arrays. See Figure 5.1. This

data was corrected and then inserted, one data type at a time, in the sequential and

63

numerical order as defined in the relational catalog, one tuple at a time. Retrieval of the data

for modifications is not a problem. Once the user made the corrections on the data, the data

was inserted. Inserting the data in a numerical order is not possible when the modification

is of data already stored in the MDBMS. Therefore, maintaining the knowledge of where

the pointers to the information are, becomes very important. The storage of the values in

respective value array structures proved to be a way to keep track of the information the

user was attempting to modify. Another concern was where to place the data upon

completion of the modification operation so that it does not cause storage addressing

problems when retrieving the data at a later date. User's do not always want to change

everything in a tuple or in a specific manner. Pei uses an index called the activemedialist

to maintain accountability of the insertion of media data types. His method cannot be

applied to the modification of data inside the database, as INGRES generates numbers

internally that would confuse the indexing mechanism.[Ref. 14, Ref. 15] For modification

of data already stored inside the database, media flags are used in the modifying of stored

data. The media data flags alert the MDBMS that media data is involved in the processing

of the data values the user wants to modify. The media flags, as shown in the prototype

program, let the counters know when they must be incremented as the media data is

processed. If the changes do not occur to the media data, then the same file-id is provided

to the media data in the new tuple relationship.

64

Table List Table Array
1 abe~metable key tt-count attr _entry

2 ship 1 10 1
3 ship-weapon 7 2 2 11

4 weapon 3 5 13

officer 4 7 18

hIt_value fyvalue C_value IMG..Yalue SND-value

1 10 eff Kulp, 1 1

2 Capt 23
1 Fred Pong 3 4

4 Cdr 4 5
5 8500 Vince Lu

Figure 5.1 Table List, Table Array and Value Array Tables for the Catalog
Using the Officer Table as the Data Entries

attname data-type med ia..id next_index value...ntry

18 o-id integer -1 19 0

19 o-name character20 -1 20 0

20 rank integer -1 21 1

21 salary integer -1 22 2

22 rep-year integer -1 23 3

23 photo image 4 -1 0

24 voice sound 4 -1 0

*25 misn-id Iinteger 1-1 126 10

Figure 5.2 Att-Array for the Catalog Using Officer Table Data Entries

65

B. DESIGN AND IMPLEMENTATION FOR MODIFICATION

1. Testing Methodology

Once the switch mode structure was integrated into the retrieve module code, trial

executions of a simplified data modification began. The first runs dealt with modifying one

attribute of formatted data in only one tuple. When several attempts to modify one attribute

of formatted data, either integer, character, or float, for one tuple worked, we tried

modifying more than one attribute of formatted data for a single tuple. This did not present

any problems as the values of the different standard values are each stored in their own

value arrays as mentioned in Chapter II. See Figures 5.1 and 5.2. Since each array contains

the respective value type, the index to the entry in the value array is entered into the

value-entry column of the Att_array for that attribute. These arrays and the media flags that

are introduced later provided a means of proper manipulation of the internally stored data.

After one tuple was able to be modified, then new queries that would give more than one

tuple as a result were tried. This multi-solution method required another pointer to loop

through the database looking for more than one tuple. As the pointer looped through to find

matches to the query, the accountability of the cursors and the pointers gained attention.

Several counters and boolean flags to maintain records of the pointers to data stored in the

INGRES database management and the data in the temporary tables were added.

When the delete operation for multiple formatted tuples was working fine, the

obstacle of the one tuple with one media type in the relation was the next test of the system.

The operations to delete one tuple of formatted data with one media type image are as

follows: First the same retrieval operations to get the table name and conditions from the

user must occur. Once the desired table is retrieved, a check for media data is performed.

If media data is included, then the relation table key is found and the media relation table

is located by using the table key and the media iid for image or sid for sound data. The

media data that meets the specific query is deleted. After the media data is removed, the

formatted data is deleteo. This process is repeated and extended to handle an increasing

66

number of tuples possessing one media attribute. When the formatted tuple with one media

works for either voice or image, then testing returns to just one tuple containing two media

attributes. Successful two media data in one tuple test leads to creating another looping

mechanism for more than one tuple with two media attributes. This configuration is similar

to the one used for the multiple tuple formatted data case. Media tables stored as abstract

data types are handled in such a way that the user is unaware of the separate tables accessed

when deletion is called. In the modification process, however, the user participates in the

processing of the media tables to a limited extent because media relation attributes, such as

the media data's f_id and description, can be modified.

After this modification code worked with the simple retrieve operations created by

Pongsuwan, it was integrated into Aygun's complex query version of retrieve. The merging

of the retrieval, modification and deletion modules forced a change in the programming

code structures each of us developed separately. As we worked together, the switch

statement that I mastered for modification and deletion, would not work properly in the

integrated code. The switch statement overlapped a user choice retrieval menu that queried

for complex queries. An if statement was substituted for the switch statement to achieve a

working composite program.

2. Main Procedure for the Modify Operation

Initially, several flags are set to maintain a count on the formatted, image, and

sound types of data in the MDBMS. The actual operations for the modify procedure after

choice five is selected from the main menu are as follows:

retrieve (RTRVEMODE): The main retrieval module is executed to retrieve the

user's query conditions. The mode statement of RTRVEMODE is passed first to locate

the data that meets the query. MODMODE variable is passed to the main retrieve function

so that the actual execution of the modification on the retrieved data takes place.

table_cursor = table_entryO: This sets the pointer to the table where data will be

matched to the data stored that eventually will be modified and re-inserted.

67

getall-atts_ofa..givenjableo: This function retrieves all the attributes of the

tuples that meet the user specified conditions.The user will then have the tuple available to

modify all attributes before re-insertion

ql_retrieve(MOD_MODE): The modification processes are executed when the

modify mode in the if statement occurs in this function call. Procedures are called to locate

the media data if it is involved in the modification query.

flags set to false for formatted, image and sound data: These flags help maintain

the counts on the indices to the tuples to modify.

print-for-modify(c): This procedure is embedded INGRES code that retrieves the

tuple values that meet the conditions the user states and prints out the tuples so that the user

may see how many and which tuples are to be modified. The user will be asked to modify

each tuple one by one in the next procedure.

process-tuple.by-tuple(r): This procedure is the function that checks for multiple

tuples meeting the user query criteria.When more than one tuple rzeds modification, the

first in the database called will be modified first and continue to loop through the database

to search for other tuples. After all those that the user requested are modified, this process

terminates and each of the tuple changes is shown to the user in the procedure below.

mod_display_tuple(mode, media-counter): This procedure shows the user the

tuple information with the changes he has made to the original tuple. This procedure in turn

invokes mod_prnt_tuple and mod.print_mediaJuple. If more modification is necessary

for the tuple after the user sees it, the user is able to make those corrections during the

continued execution of this procedure.

store_data(mode): This procedure is invoked every time the catalog information in

the system tables have been updated or modified. The procedure further performs processes

from the system tables in the main memory to host three catalog files in external storage

devices.

mod&ql-insert_tuple(mode): During modification, this procedure generates the

user's SQL statements for data modification. It constructs the SQL commands for the

68

insertion of a modified tuple. The sub-procedure of the mod_ql_inserttuple is called to

generate the user SQL statements for the data insertion of the modified media relations. The

SQL commands create the media relations and the INGRES.

deleteformodify(r): This procedure will execute the deletion of the media data that

the user wanted modified. This procedure matches the data stored in the database to the data

in the temporary table. Then other subroutines are called, such as mod getrid image and

mod get ridsound, to remove the media data from the database.

deleteformatted-partformodifyO:This procedure will execute the deletion of

the formatted data that the user wanted modified.

dropJable(tempjtable): INGRES command to remove all the temporary tables

created to hold the data while processing the modification operation.

reset media flags.

C. USER INTERFACE EXAMPLES

For modification in the MDBMS, the user must follow the modify procedures as

outlined in the main menu. As expected, the user must first state the conditions of the

modification. The data is retrieved and then tuple by tuple, the user may modify any and all

of the attribute values currently stored in the MDBMS. The prototype system prompts the

user for the data necessary to process the user request. The actual user responses in this

example are encased in the cursor (<>) in bold type. Two examples are given, one dealing

with formatted data and the other containing some image data.

1. Query 1 - Formatted Data Modification

The first query to modify is "Find the officer with the name Fred Pong and

change his rank to CAPT and his salary to $8700." In this query, there is not a need to

connect to the parser to analyze a media description. The original table information meeting

the user conditions will be displayed to ensure it is the correct relation to be modified. After

displaying the information, the user will respond to continue to modify or terminate the

current operation. When continuing the modification operation, the user is asked which

69

items need modification. The retrieve and deletion operations will not be explained in depth

as they are stated in previous chapters. Refer to Figure 4.3 to see the values of the relations

and Figure 5.3 to see the values upon completion of the modification operation.

MULTIMEDIA DATABASE MANAGEMENT SYSTEM

1. Create Table
2. Insert Tuple
3. Retrieve
4. Delete
5. Modify
6. Print out current data information(test purpose)
0. Quit

Select your choice: <5>

Your selection is MODIFY!

Hit Return to continue!(Any other key to QUIT!)

Enter a table name to hold the temporary result of the query:< was>

Select the table(s) separated by a comma <,>: (<?> for HELP!)

SELECT TABLE(S): <officer>

Any condition? (y/n): <Y>

Group condition? (y/n) <N>

Enter attribute name: <oame>

70

Enter the condition

= "Fred Pong"

Searching...

Where = "Fred Pong"

There are I record(s) that match the query

Press ENTER to continue...

You have I tuples to modify

There are 1 tuples to be processed!

Press ENTER to continue...

Table Name: officer

Order Attribute Name Data Type Value

loid integer 100

2 oname c20 "Fred Pong"

3 rank c20Cdr

4 salary integer 8500.00

5 repyr integer 1988

6 photo image HAS VALUE

7voice sound HAS VALUE

8 description '/work/mdbms/MDBMS/91216.194349',

'he has green eyes.',

'/work/mdbms/MDBMS/91216.194350',

'he has high voice.',

Any change before insert? (y/n):<Y>

Select the order which you want to change its value:

71

Any other key to cancel the operation! Select:<3>

Table Name: officer

AttName: rank

Data Type: c20

Value: Cdr

Please Enter <<c20>> Value (? if unknown): Capt

Table Name: officer

AttName: rank

Data Type: c20

Value: 'Capt'

Any More Change? (y/n): y

Table Name: officer

Order Attribute Name Data Type Value

lo-id integer 100

2 o_name c20 "Fred Pong"

3 rank c20Capt

4 salary integer 8500.00

5 rep-yr integer 1988

6 photo image HAS VALUE

7voice sound HAS VALUE

8 description '/work/mdbms/MDBMS/91216.194349',

'he has green eyes.',

'/work/mdbms/MDB MS/91216.194350',

'he has high voice.',

72

At this point, the user has changed one of the tuple values and is asked if more

tuple values are to be modified. After this sequence is executed and all the values are

modified, there is one last viewing of the tuple values. If the values are to the user's liking,

then the old values are removed from the database and the temporary tables as shown in

chapter IV.
****** ********* **** ***** ** ***** ***

Select the order which you want to change its value:

Any other key to cancel the operation! Select: 5

Table Name: Officer

AttName: salary

Data Type: integer

Value: '8500'

Please Enter <<c20>> Value (? if unknown):8700?

Table Name: Officer

Att_Name: salary

Data Type: integer

Value: '8700'

Any More Change? (y/n): N

Table Name: Officer

Order Attribute Name Data Type Value

loid integer 101

2 oname c20 "Fred Pong"

3 rank c20Capt

4 salary integer 8700.00

5 rep-yr integer 1988

73

6 photo image HAS VALUE

7voice sound HAS VALUE

8 description '/work/mdbms/MDBMS/91216.194349',

'he has green eyes.',

'/work/mdbms/MDB MS/91216.194350',

'he has high voice.',

Select the order which you want to change its value:

Any other key to cancel the operation! Select: <cr>

The user has completed the data modification process based on the formatted data

query. Now the INGRES insertion process takes place and then the deletion of the original

data and temporary tables occurs.

SQL statement:

insert into officer (o-id,

o_name,

rank,

salary,

repyr,

photo,

voice)

values ('101',

'Fred Pong',

'Capt',

8700,

19988,

74

2,

3);

INSERTING STD TUPLE NOW. PLEASE WAIT!

INSERT A STD TUPLE COMPLETE!

press ENTER to continue

insert into photo4 (iid,

f_id,

descrp,

height,

width,

depth)

values(3,

'/work/mdbms/MDBMS/91216.194349',

'he has green eyes.',

480,

640,

8);

INSERTING MEDIA TUPLE NOW. PLEASE WAIT!

INSERT AN IMAGE TUPLE COMPLETE!

press ENTER to continue

insert into voice4(sid,

f_id,

descrp,

frequency,

sample,

resolution,

75

encoding)

values(4,

'/work/mdbms/MDBMS/91216.194350',

'he has high voice.',

10,

10,

10,

4);

INSERTING MEDIA TUPLE NOW. PLEASE WAIT!

INSERT A SOUND TUPLE COMPLETE!

press ENTER to continue

(return to main menu)

2. Query2 - Media Data Modification

This query involves the user specifying the conditions based upon the description

of the voice. After finding the data entries that match the user's conditions, modification

operations for this data occurs. The query "locate the officer with a voice description of

'strong voice' and change it to say 'loud voice' then check his photo and change the

description to state 'wears glasses' if he has them in the photo".

MULTIMEDIA DATABASE MANAGEMENT SYSTEM

1. Create Table
2. Insert Tuple
3. Retrieve
4. Delete
5. Modify
6. Print out current data information(test purpose)
0. Quit

76

Select your choice: <5>

Your selection is MODIFY!

Hit Return to continue! (Any other key to QUIT!)

Enter a table name to hold the temporary result of the query:< met>

Select the table(s) separated by a comma <,>- <?> for HELP!)

SELECT TABLE(S): <officer>

Any condition? (y/n): <Y>

Group condition? (y/n) <N>

Enter attribute name: <sound>

Please enter your query description

*noun phrases separated by commas and end with an exclamation mark

*sentences ending with a period.

(end whole description with an empty line);

he has strong voice.

Searching....

Where officer.sound

voice4 = "he has strong voice"

There arel record(s) that match the query

record id 4 oname: Vince Lum

Record no 1 filename:/tmp-mnt/n/virgo/work/mdbms/MDB MS/93243.14538

Sound Management...

Number: I

Description:

<<he has strong voice>>

Do you want to play the sound? (Y/N): Y

77

(voice is played for the user on the IBM PC)

show image...

Record no 1

Do you want to see the image? (Y/N): Y

(Image is displayed for the user)

Searching...

Order Attribute Name Data Type Value

1 o-id integer 102,

2 oname c20 'Vince Lum'

3 rank c20 'LCDR',

4 salary integer 8000,

5 rep-yr integer 1989,

6photo image HAS VALUE

7voice sound HAS VALUE

Select the order which you want to change its valueTable Name: officer

Att_Name: voice

Data Type: sound

Value:

- >Filename: '/tmpjmnt/n/virgo/work/mdbms/MDBMS/93422.47329'

==>Description: <<he has strong voice>>

Change SOUND file name? (y/n): N

Play the SOUND before enter the description? (y/n): n

Change SOUND description? (y/n): y

Please enter your modified description

78

* noun phrases separate by commas and end with an exclamation mark

* sentences ending with a period.

<<'he has loud voice'>>

Press Enter to Continue;

Table name: Officer

Order Attribute Name Data Type Value

1 ojid integer 102,

2 o_name c20 'Vince Lum,'

3 rank integer 'LCDR,'

4 salary integer 8000

5 rep-yr integer 1989,

6 photo image HAS VALUE,

7 voice sound HAS VALUE,

8 description '/work/mdbms/MDBMS/93456.23186'

'he has small nose.'

'/tmp mnt/n/virgo/work/mdbms/MDBMS/978654.23432'

'he has loud voice',

Any change before insert? (Y/N): <Y>

Select the order which you want to change its value:

Any other key to cancel the operation! Select: 6

Table Name: officer

AttName: photo

Data Type: image

Value:

-- >Filename:

79

<<'he has small nose'>>

Please Enter <<image>> File Name!

NOTE: Enter The Full Path Name: (? if unknown)

itmp_ mntlnlvirgo/worklmdbms/MDBMS/98345.25563

Display the image before enter the description? (y/n): n

Change IMAGE description? (y/n): y

Please enter your query description

* noun phrases separated by commas and end with an exclamation mark

* sentences ending with a period.

(end whole description with an empty line):

<<he wears glasses.>>

Table name: Officer

Order Attribute Name Data Type Value

I o-id integer 102,

2 oname c20 'Vince Lum,'

3 rank integer 'LCDR,'

4 salary integer 8000

5 repyr integer 1989,

6 photo image HAS VALUE,

7 voice sound HAS VALUE,

8 description '/work/mdbms/MDBMSf93456.23186'

'he wears glasses.'

'/tmp-mnt/nivirgo/workmdbms/MDBMS/978654.23432'

8o

'he has loud voice',

Any change before insert? (Y/N): <N>

f_id==>/work/mdbms/MDBMS/91216.194349

descrp==>he has loud voice.

file id==>/work/mdbms/MDBMS/9678456.3342

descrp==>he wears glasses.

Connect to PARSER, Please Wait

Hit RETURN to Continue!

SQL statement:

insert into officer (oid,

o_name,

rank,

salary,

rep-yr,

photo,
voice)

values (102,

'Vince Lum',

'LCDR',

8000,

1989,

5,

6);

81

INSERTING STD TUPLE NOW. PLEASE WAIT!

INSERT A STD TUPLE COMPLETE!

press ENTER to continue

insert into voice4 (sid,

f_id,

descrp,

freq,

sample,

resolution,

encoding)

values(6,

'/work/mdbms/MDBMS/91216.194349',

'he has loud voice'.

10,

10,

10,

4);

INSERTING MEDIA TUPLE NOW. PLEASE WAIT!

INSERT AN SOUND TUPLE COMPLETE!

insert into photo4 (iid,

fLid,

descrp,

height,

width,

82

depth)

values(5,

'/tmp-mnt/n/virgo/workmdbms/MDB MS/91216.194349',

'he wears glasses.',

480,

640,

8);

INSERTING MEDIA TUPLE NOW. PLEASE WAIT!

INSERT AN IMAGE TUPLE COMPLETE!

press ENTER to continue

(return to main menu, modification complete!)***

These examples are reflected in Figure 5.3. The media tables for the tuples must

be indexed as the change in the media data requires a new relation be added to the database.

83

Relation name OFFICER

Aid oname rank salary repyr photo voice

100 Jeff Kulp Capt 10,000.00 1990 1 1

101 Fred Pong Capt 8700.00 1988 2 3

102 Vince Lum LCDR 8000.00 1989 5 6

LTJG
103 Mary Green 7200.00 1991 4 5

Relation name PHOTO4

iLid f(id descrp height width depth

8
1 /n/virgo/mdbms/gif/jeff.ras big head 640 480

2 In/virgo/rndbms/gif/fred.ras green eyes 640 480 8

/n/virgo/mdbms/gif/plum.ra, he wears
5__ gl 3sses 640 480 8

4 /n/virgo/mdbms/gif/mary.ra,, brown hair 640 480 8

Relation name VOICE4
s_id f id descrp free sampl resol encod

1 /n/virgo/mdbms/snd/jeff slow voice 10 10 10 4

3 /n/virgo/mdbms/gif/fred high voice 10 10 10 4

6 /n/virgo/mdbms/snd/vinc loud voice 10 10 10 4

5 /n/virgo/mdbms/snd/mr weak voice 10 10 10 4

Figure 5.3 Media Relations After Modification of Data Values

84

VI. CONCLUSIONS AND RECOMMENDATIONS

A. REVIEW OF THESIS WORK

The NPS MDBMS prototype is a demonstration version of a Multimedia Database

Management System which can manage formatted and multimedia data. With the

completion of the deletion and modification procedures, the prototype now provides all the

conventional database management operations. Items can be deleted or modified now after

they are stored. Prior to the completion of this thesis, only the create, insert, and retrieve

options were available. The system, as it is now, performs media data processing by means

of executing the SQL commands step by step. These commands perform intermediate

relations and sub query decompositions/recombination in order to attain the desired output.

The final product, a relation containing the tuples is available to the user for review, update,

delete, or display the data. Companion theses present the complex query retrieval [Ref. 2]

and the ideal user interface for an MDBMS [Ref. 13] also incorporated in the prototype.

Repetitive updates can be made based on the descriptions of image, sound and

formatted data can be changed or deleted permanently. The research done to define the

deletion and modification operations, and specifically address data involving image and

sound and the integration of media with the formatted data, is explained in the body of this

thesis. This thesis concentrated on the complex methods and operations of data

modification and deletion for the MDBMS. Solutions to some of the issues raised were

found. The type of data structures required to capture the user supplied information for

modifications on data and the coding for compilation into acceptable INGRES statements

are two of these issues. With the completion of the deletion and modification procedures,

the prototype, a complete database management system prototype able to manage different

types of media data from creation to deletion, is obtained. This multimedia database

management system demonstrates the great advantages users possess with a MDBMS over

a traditional DBMS.

85

The prototype's structured foundation was established for the design and

implementation of the functions that perform the user requested actions. These actions are

implemented interactively with a line by line interface. The transformations of the user's

query is entered into an embedded SQL request to be processed in INGRES and written in

standard 'C' programming language. This query is replaced by embedded SQL compiled

statements. Each corresponds to a set of function calls to operate on the appropriate

standard and media sound or image - object relations.

B. FUTURE WORK

Future work areas overlap with those currently being researched as the MDBMS

evolves into a better operating prototype. Research is currently going on for the appropriate

graphical user interface for the MDBMS [Ref. 13]. This graphical interface will also

incorporate a more detailed help tool which the user can easily operate the first time the he

runs the MDBMS. The design of this user interface uses icons generously. Having better

user help pull-down menus or help screens that provide definitions or examples of how the

database steps are performed, would surpass the current line by line user interface that

supports the MDBMS now. The graphical user interface will display more vividly the way

the relations in the database are arranged and the transactions as they occur in the MDBMS.

Further work envisioned is the implementation of this ideal graphical user interface

designed in Peabody [Ref. 13]. An upgrade to an object oriented language will likely make

a difference towards improving the user interface.

The principles of understandability, maintainability, correctness, reusability, and

uniformity are team programmers goals in their products. The module hierarchy reflects the

relationships and the way each module interacts with the others. More work can be done

with the modularization of the MDBMS. Work completed by Aygun [Ref. 2], and myself

was just enough to get the large program separated into some main modules. Due to a lack

of time, more work to eliminate redundant code and consolidate similar operations was not

86

accomplished. Future work in continuing our modularization efforts would make a better

prototype.

Another idea for the improvement of the MDBMS is allowing the user to change a

table format after it has been created and data inserted into the database. Currently. the data

in a table that needs changing cannot retain the data as the table must be removed and then

is restructured. The new option to alter the table and continue to use data already stored

would be a more efficient way to manage data. An example of this is to alter a personnel

table by adding a personal insurance attribute. To alter the personnel table attributes, once

it is discovered that a column of data is needed, or is no longer needed would enhance the

databases workability for modem day users. Reasons to retain data changes as does the

method of storing the data.

C. MDBMS IMPROVEMENT POSSIBILITIES

The current MDBMS can only process up to two types of media data: sound and

image. Further work in processing more media types such as graphics, video or signals

would broaden the range of the media portion of the project To process multiple images

and/or sound data types for one tuple. An example is having a photo of the ship and the

weapons that are on the ship all in the ship relational tuple. Or, having the captain and the

executive officer recorded voices accompanying the ship relational tuple. This will take

some restructuring of the modification procedures and functions. Maintaining the

accountability of the pointers and cursors will be the largest obstacle to overcome for these

suggested improvements. More media data types integrated into the MDBMS will prove

different styles of creating relations may work better than the ideas presented here on how

to modify data existing in a database management system.

A user's manual to accompany the prototype would be ideal for this demonstration

model. It is not easy to work with in the line by line user entry configuration without some

basic knowledge of the relations and the terminology of the system. A user's manual and

better exception handling are ways to improve the prototype. Increasing the error control

87

and checking mechanisms of the prototype would help to eliminate some errors that occur

at the time the user interacts with the system. At the present, not all errors are handled in

the best manner. Having more checks and clear, more concise system responses for the user

to interpret would only enhance the system usefulness.

As more work is done with the project, an upgrade to a current INGRES version

would eliminate some of the inherent problems we encountered in working with the

prototype. As mentioned in the body of the thesis, much software engineering is necessary

to upgrade the code to a newer INGRES version. Work is planned to upgrade the natural

language parser with a more reliable content search success. A larger dictionary caption

base and possibly using super groups for the caption searches and having a text type are

other prototype enhancing ideas.

88

APPENDIX A: SOURCE CODE FOR DELETION

* Title : Retrieve.c *
* Author : Aygun/ Stewart *
* Date August 1991 *
* History : Improvements on Retrieval operations to include complex *
* : query processing. Also contains the procedures to perform *
* : the deletion operations. An if clause provides the ability *
* : to switch options for retrieval or deletion of data *
* Description This module implements the retrieval process in the *
* : Multimedia Database System. *

* Export Interface: *
* retrieve(RTRVEMODE): *
* incorporates the retrieval process. The user is asked to *
* enter the name of table(s) and attribute(s) he wants to *
* retrieve. If he does not know the names of the tables or *
* attributes, he can type "?" to list all the tables and *
* attributes in the catalog. *
* retrieve(DELMODE): *
* incorporates the deletion process. The user is asked to *
* enter the name of the relation table one at a time of what *
* attributes in the catalog he wants to delete. *

* Import Interface: *
* print all tableo : Prints out the table catalog information on screen *
* from InsertModule.c *

* checktablenameo: Checks the tablename if it is duplicate *
* get-medianame0 : Get media table name by appending table-key at the *
* end of att_name. *
* from CreateModule.c *

* yes no answer() : Gets yes or no answer from the user.
* clr-scr0 : Clears the screen. *
* from Userlnterface.c *

* play-sound(filename):Sends command from SUN to PC to play the SOUND *
* media file. *
* from SoundModule.c *

89

#include <stdio.h>
#include <string.h>
#include <pixrect/pixrect-hS .h>
#include <sysiwaith>
#include <suntool/sunview.h>
#include <suntool/canvas.h>

#include "defines.h"
#include "errors.h"
#include "struct.h"
#include 'Global Variables.h"

#include <rpc/rpc.h>
#include "plcall.h"
#include "defines.h"
#include "errors.h"

char c;
char temp media name[3];
char join-condition[100];

int look-more=&; P use for loop the cursor ~

struct select-att satt[10];
struct select-tab stab[(10];
struct group group-count[l0],
int o,pk,numcon,numgroup,icond;
STR-name tab[l10];
char *all-condition;
char condition[l100];

P* Selection attribute *
P* Condition attribute *
STR-nane att[10];

1P Each group of attribute *
mnt att-groupf 10];

P* Condition type of each attribute 0 for formatted I for image 2 for sound*/
int contype[10];

P* Media attribute for description *
STR-name media att[lO];
int number-media;

90

1* Condition for each attribute *
char con[10 [100];

1* Attribute type for each select *
STR-name atttype[l0];
int cond,gcond,i -cond[10] ,m=-O,x=0O,y=0,n=-O,o=-O;
char buff[I100],a,yesno-answero;
char temp-table(201;
char temp-able 1 [201;
char temp- jable2 [20];
char temp-jable3[5] = {'h','u','s','i','4' };
char temp-.table4[5]= { h',u','s',i','5' I;
char temp-abLe8[51={ 'h','u','s','o','1' };
char temp-table9[5]=I h,'u','s','o,'2' };
char temp-tablel10(51 =I 'h u,'s,'o,3 9 1
char temp-table 11 [51 = Jh','u','s','o','4' I;

char group I 3= gr,1}
char group2[3]={'g','r','2' };

char condition-for-nested[100];
char attribute-for-nested[20];
char join -for -nested[99];
mnt more-selections;
mnt more-levels;
mnt aggregate-found;
char t 5= t''V, I
char [5=', t .. ,a,',2';
char t[]{t,''''j''1
chart[5=tI,',,4'}
char wrong-descrp = TRUE;
mnt act-media-count;
int act-media-list[10];
int media -counter=O0;
mnt formatted-flag;
mnt image-flag;
mnt sourdflag;

1* Procedure initialize the array to empty *
1* Initialize all parameters used in the retrieve to null *

void init()
I
int ij;

91

icond=0;
gcond=0;
numgroup=0;
numcon=0O;
for (i=0;i< 10; i++)
for (j=0;j < 13;j++) {
satt(i] .t-nameUl =-0;
satt[i] .anameo] =0;
stab[i].tLnameUj] =0;
att[i]U[]=0;
tab[i]U[]=0;
I
for (j=0j<100;j++) t
con[i]U]=0O';

1* This procedure get the table name, attribute name of that table *
1* and then return the attribute type to the user *

getatttype(tab-name,att-name,attjtype)
STR-name tab -name;
STR-name att~name;
STR-name att-type;
I

int ij,k,found,count;
found = 0;
for (i=0;i < table count;i++)f

if (strcmp(tablearray[i] .table-name,tab name)==0){
j = table-aray[i].att entry;
count = table -arrayfi.att-count;
i =1000;

for (k=0;k < count;k++){
if (strcmp(attarrayU].att_name, att name)==0.-)

strcpy(at(-type,atLaxrayb] .data-type);
/* For test only */

printf('Nn%s",att -arrayU].att-name);
printf('\t%s~n" ,att type);
found = 1;
k = 1000,

J= att-arrayUjI.next -index-,

92

1* procedure to process the sound condition *
/* put the result in the media tale [number condition] for process later *

void process-icon3(query-phrase,number)
char query-phrase[DESCRLEN+ 1];
mnt number;

int id;
char answer, repeat, yes-no-answer O),connumbermedianum;
mnt i, query-er, queryjlen, in len, f-flag,found;
struct pxcrect *pr;
colormapjt cm;
char descr[DESCRLEN+ 1];
mnt show-pid, wait-pid;
union wait status;
mnt imageno;
printf ("\nEntering RETRIEVE .. \n)
cm.type = RMT -NONE;
cm.length = 0;
cm.map[0I = NULL;
cm.map[l] = NULL;
cm.map[21 = NULL;
/* this is absolutely necessary!!!! Otherwise pr load colormap might

not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. *

I
/* # line 193 "p2.sc" *11* create table *

Ilsqlnit((char *)0);
Ilwritedb("create ");
temp media -name[0]='p';
medianum=number+48;
temp_media-name[l]=medianum;
temp_media-name[2]=-O;
printf('Nn%s" ,temp media -name);
Ilwntedb(temp_media-name);
Ilwritedb('(");
Iwritedb("sid=i4)");
IlsqSync(0,(char *)0);

1* # line 194 "p2.sc" *f/* host code *
printf("The query description now is:N\n %s<<n\n",query-phrase);

printf ("Searchqing .. Nn)

93

/* exec sql declare c I cursor for
select iid, PIXRECT (iimage), COLORMAP (i-image),

DESCRIPTION (i-image)
from emp-img 1
where SHOWS (iimage, query-phrase);

The statement is deleted by the preprocessor.
However, the output functions and the selection conditions

associated with the cursor c I will be used later.
The following declarations are generated: */

I
int ISerrorc 1;

char ISerrmcc 1 [ERRLEN+ 1];
char *ISfnc [FILENAMELEN + 1];
char *ISdescrc I [DESCRLEN + 1];

sqlca.sqlcode = 0;
ISerrmcc 1 [0] = ',

/* exec sql open c 1; */
/* exec sql whenever not found go to closec 1; */
/* translated by preprocessor into: */

if (ISerrorc 1 = ISshows-open("image","iimage" ,ISfnc 1 ,query-phrase,ISerrmcc 1))
I

sqlca.sqlcode = ISerrorc1;
if (sqlca.sqlcode == QUERYWORDERR II

sqlca.sqlcode == QUERYSTRUCTUREERR)
strcpy(sqlca.sqlerrm.sqlerrmc,ISerrmcc 1);

I
/* end of preprocessor output for open c I1

if (!sqlca.sqlcode)
I
fjag = 0;
for (;;)
I

/* exec sql fetch c I
into :imageno, :pr, :cm, :descr;

This is translated by the preprocessor into: */
if (ISerrorc I = ISshowsfetch("image","i-image",ISfnc 1,queryphrase,ISerrmcc1))

sqlca.sqlcode = iSerrorc 1;
/* printf("main.sc(ISfncl): %sn", ISfncl); *1
if (sqlca.sqlcode == NOTFOUND)

goto closec 1;
fiflag = 1;
if (!sqlca.sqlcode)
I

/* # line 653 "p1 .sc" */f* select */
strcpy (table-array[tablejindex].tablename, tab[number]);
found = checktable-nameo;

94

table-cursor = table-entry;
strcpy(media-name,att[number]);
get-media-nameG;
printf("%s" ,media name);

Ilsqlnit(&sqlca);
llwritedb("retrieve(imageno= t),
Ilwritedb(media -name);
Ilwritedb(".s,-id,ISdescrc 1=");
Ilwritedb(media -name);
llwnitedb(".descrp)w");
IIwritedb('here ");
lIwritedb(media-narne);
lIwntedb(.fid=");
Ilsetdom(1,32,O,ISfnc 1);
Ilw'tedb(" ");
IlsqRinit(&sqlca);
if (llerrtest() == 0)1
if (llnextgeto != 0)1

llretdom(1,30,4,&imageno);
Ilretdom(1,32,O,ISdescrc 1);
/* Ilnextget */

IlsqFlush(&sqlca);
1 * llerrtest *

1* # line 657 "plI.sc"*1 host code *
if (!sqlca.sqlcode)
I
ISerrorc 1 = ISdescription (ISfnc 1, ISdescrc 1, descr);

sqlca.sqlcode = ISerrorc 1;

else
sqlca.sqlcode = PROGRAMERR;

/* end of preprocessor output for fetch c If
if (sqlca.sqlcode)

goto closec ;
id = imageno;

/* # line 270 "p2.sc" *11* insert ~

Ilsqlnit((char *)0);
Ilwritedb("append to)

Ilwitedb(tempmedianame);
llwritedb("(s -id=");
lIsetdon(1 ,30,4,&id);
llwritedbQ' ")

95

IIsqSync(3,(char *)0);
I

/* # line 272 "p2.sc" *//* host code */
I/* end for loop of cursor ci *

closec 1:
/* exec sql close ci; 1/
/* translated by the preprocessor into: */

sqlca.sqlcode = ISshowsclose("image","i-image",ISfnc 1 ,query-phrase,ISerrmcc 1);
/* # line 693 "p 1.sc" *//* host code */
1 /* end of successful open ci ; correct query description */

/ /* end of preprocessor declaration block */
if (sqlca.sqlcode == QUERYWORD_ERR)
I

printf("The system cannot understand the word >>%s<<\n",sqlca.sqlerrm.sqlerrmc);
query-err = 1;

I
if (sqlca.sqlcode == QUERYSTRUCTUREERR)
I

printf("The system cannot interpret the phrase\n>>\n%s<<n",sqlca.sqlerrm.sqlerrmc);
query-err = 1;

I
if (query-err)
I
I

I
if (!f_flag)

printf("There are no media matching that query description.Nn");
if (sqlca.sqlcode)

printf("An error has occured while accessing the database\n\
sql error code: %dWn", sqlca.sqlcode);

clr_scro;
} /* end of retrieve-photo 0 */*** * ** ******* ** * *** **** ** ** ******** * **** *** **** ** *** *** *** **** *** ** ** * ******

/* procedure to process the image condition */
/* put the result in the media tale [number condition] for process later */

void process icon2(query-phrase,number)
char queryphrase[DESCRLEN+ 1];
int number;
I
int id;
char answer, repeat, yes no-answer (),con-nAinbermedianum;
int i, query-err, query-len, in-ten, f-flag,found;
struct pixrect *pr;
colormapt cm;
char descr[DESCRLEN+I];

96

int show-pid, wait-pid;
union wait status;
int imageno;
printf ("AnEntering RETRIEVE ...\"),
cm.type = RMTNONE;
cm.length = 0;
cm.map[0] = NULL;
cm.map[1] = NULL;
cm.map[2] = NULL;
/* this is absolutely necessary!!!! Otherwise prjload colormap might

not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

I
/* # line 193 "p2.sc" *//* create table */
I
Ilsqlnit((char *)0);
llwritedb("create ");
tempmedia name[0]='p';
medianum=number+48;
temp-medianame[l]=medianum;
temp-medianame[2]--O;
printf('\n%s",tempmedia name);
Ilwritedb(tempmedianame);
Ilwritedb("(");
Ilwritedb("i_id=i4)");
IlsqSync(O,(char *)0);

I
/* # line 194 "p2.sc" *//* host code */

printf("The query description now is:\n>>%s<<n\n",query-phrase);
pnntf ("Searching Nn");

/* exec sql declare c I cursor for
select i_id, PIXRECT (i_image), COLORMAP (iimage),
DESCRIPTION (ijimage)
from empimgl
where SHOWS (i_image, query-phrase);

The statement is deleted by the preprocessor.
However, the output functions and the selection conditions

associated with the cursor c 1 will be used later.
The following declarations are generated: */

I
int ISerrorc 1;

char ISerrmcc 1 [ERRLEN+ 1];
char ISfnc1[FILENAMELEN + 11;
char ISdescrc I [DESCRLEN + 1];

sqlca.sqlcode = 0;

97

ISerrmcc 1 [0] = V0;
1* exec sql open ci1; */
/* exec sql whenever not found go to closec 1; ~
/* translated by preprocessor into: *

if (ISerrorc 1 = IS showsopen(" image","Liimage",lSfnc 1 ,query-phrase,ISerrmcc 1))
I

sqlca.sqlc ode = ISerrorc 1;
if (sqlca.sqlcode == QUTERYWORDERR 11

sqlca.sqlcode == QUERY..$TRUCTUREERR)
strcpy(sqlca.sqlerrm.sqlerrmc,ISerrmcc 1),

/* end of preprocessor output for open c 1I*
if (!sqlca.sqlcode)

fag = 0;
for (;

1* exec sql fetch c I
into :imageno, :pr, :cm, :descr;

This is translated by the preprocessor into: *
if (ISerrorc 1 = ISshows-fetch("image","L-image",lSfnc 1 ,query-phrasediSerrmcc 1))

sqlca.sqlcode = ISerrorc 1;
/* printf("main.sc(ISfnc 1): %sAn", lSfnc 1); *
if (sqlca.sqlcode = NOTFOUND)

printf("main.sc: ISshows-fetch hiefert NOTFOUND");
goto c losed ;

fiflag = 1;
if (!sqlca.sqlcode)
I

1* # line 65 3 "p 1. sc"*1 select *
strcpy (table-array[tablejindexl .table-name, tab[number]);
found = check-table-nameo;
table-cursor = table-entry;
strcpy(media-name,att[number]);
getmedia nameo;
printf("%s",media name);

Ilsq~nt(&sqlca);
llwritedb("retrieve(imageno=");
Ilwnitedb(medianame);
IIlwntedb(".i-id,ISdescrc 1I)
Ilwntedb(media -name);
Hwritedb(" .descrp)w");
Ilwnitedb("here")

98

Ilwritedb(media -name);
Ilwritedb(".fid=");
Ilsetdom(1,32,0,ISfnc 1);
Ilwritedb(" ");
IlsqRinit(&sqlca);
if (llerrtest() == 0) 1

if (Hnextget()o 0) 1
Ilretdom(1,30,4,&imageno);
Ilretdom(1,32,0,ISdescrc 1);
1 * Ilnextget */

IsqFlush(&sqlca);
} * Ilerrtest *

/* # line 657 "p1 .sc" */I* hosi: code *
if (!sqlca.sqlcode)
I

if (! (ISerrorc I = ISpixrect (ISfncl1, ISdescrcl1, &pr)))
if (!(ISerrorclI = IScolormap (ISfncl1, ISdescrcl1, &cm)))

ISerrorc 1 = ISdescription (IS fnc 1, ISdescrc 1, descr),
sqlca.sqlcode = ISerrorc I;

else
sqlca.sqlcode = PROGRAMERR;

1* end of preprocessor output for fetch c I1
if (sqlca.sqlcode)

goto closed ;
i= imageno;

1* # line 270 "p2.sc" *11* insert ~

Ilsqlnit((char *)O);
lwritedb("append to")
Hlwritedb(temp_media-name);
Ilwritedb("(iid=");
lIsetdom(l1,30,4,&id);
lwritedb(")it);

IlsqSync(3,(char *)0);

1* # line 272 "p2.sc" *//* host code *
I 1* end for ioop of cursor c I1

c losec :
I"' exec sql close c1; ~
f* translated by the preprocessor into: ~

sqlca.sqlcode = ISshows-c lose("im age" ," i-jmage ",ISfnc 1 ,query-phrase,ISerrmncc 1);
/* # line 693 "p1 .sc" *//* host code *I

/* end of successful open ci1; correct query description *

99

1 I" end of preprocessor declaration block *
if (sqlca.sqlcode == QIJERY-WORDERR)

printf("The system cannot understand the word >%s<<n,sqlca.sqlerrm.sqlermc);
query-err =1

if (sqlca.sqlcode == QUERY-STRUCTURE_-ERR)

printf("The system cannot inte pret the phrase\n Vin%s<<cN t',sqlca.sqlerm.sqlerrmc);
queryjerr = 1;

if (queryjerr)

if (!f-flag)
printf"'There are no media matching that query description.\n");

if (sqlca.sqlcode)
printf("An error has occured while accessing the database~n\

sql error code: %d\n", sqlca.sqlcode);
dir-scro;

I /* end of retrieve-Photo 0*

1* This procedure search through the media relation and get the *
1* file name that match with the result table and send to the *
1* present photo procedure

display-photo (imageno,tupleno,temp-table, imageaid)
int imageno;
int tupleno;
char temp-able[20];
mnt image-id;

mnt desired jupleno;
char image-value[20];
char answer, repeat, yes-no-answer 0
char query-phrase[DESCRLEN+ I],

in-phrase [DES CRLEN+ 11;
int i=Oj=O, k, c, pid, query-err, query-len, in len, fLflag,look-More=-O;
struct pixrect *pr;
colormap-t cm;
char ISfni1[FILENAMELEN+ 1];
char descr[DESCRLEN+ 1];
int show-pid, wait-pid;
mnt ISerror;
STR-path file-name;

100

char ISdescrl [DESCRLEN+ 1];
cm.type = RMTLNONE;
cm.length = 0;
cm.map[0I = NULL;
cm.mapI~l] = NULL;
cm.map[21 = NULL;
desired-tupleno=tupleno;
1* this is absolutely necessary!!!! Otherwise pr load-colormap might

not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

1* exec sql select PIXRECT (i -mage), COLORMAP (Iiimage),
DESCRIPTION (ijimage)

into :pr, :cm, :descr
from image

where i-id = :imageno;
This Image-SQL statement is transformed into the following
sequence of statements by the preprocessor:

c=1;
inttostr(imagejid, image-value);

if (llcsrOpen((char *)O,f'cursor -outputlI", "db",O,media name) =0){
Ilwritedb('retrieve(ISfn 1=)
Ilwntedb(media -name);
Ilwritedb(".");
Ilwritedb("fid,ISdescrl =);
IHwiitedb(media -namie);
Ilwritedb(".descrp");
Ilwntedb(")where ");
Ilwritedb(media -name);
Ilwritedb(" .i-id=");
Ilwritedb(image-value);
IlcsrQuery ((char *)0);

while (look more==O) I
if (llcsrFetch((char *)O, "cursor-OutputlI","db") =0)1

IlcsrRet(l1,32,0ISfn 1);
IlcsrRet(lI,32,0,ISdescr I);
for (i=-O;i<MAXPATH+ 1 ;i++) I
if (ISfnl[i]=--32)

file-namei]=-O;
I
else I

101

file-name[i]=ISfn 1 [i];

printf(AnRecord no %d filename : %s: ",j+l1, ISfnl1);
if ((img~file=fopen(filename,"r))==NJLL)
I

printf'n%s", filename);
printf('NnThe file cannot be opened ! \Nx");
putchar(NLOT);

I
else{
pr-prjoad(img.file, &cm);
if (pr=-=NUTLL)

printfCAnThe file does not contain proper image");
putchar(OT7);

I
else

printf(AnShow image).

presentphotooj+l1,pr,&cm,ISdescrl);
IlcsrClose((char *)O,"ciirsor output 1","db");

fcoeI gfl)
I

IlcsrEFetch((char *)O);

if 0==c) I
look-more = 1;

/*iIcsrClose((chaj. *)O,"cursor output I ","db"); *

1* This procedure search through the media relation and get the *
1* file name that match with the result table and send to the *
/* play sound procedure *

displaysound (soundno,tupleno,temp-table, sound-id)
nt soundno;

int tupleno;
char temp- jable[20];
int sound-id;

char sound-value[20];
mnt desired-upleno;

102

char Answeranswer, repeat, yes-no -answero;
char query-phrase[DESCRLEN+ 1],

inphraseDESCRLEN+ 1];
mnt i-Oj=-O, k, c, pid, query__err, query-len, in-len, f-flag,look-more=-O;
int show-pid, wait-pid;
int ISerror;
STR-path file-name;
char ISfn 1 [FILENAMELEN+ 1]
char ISdescrl[DESCRLEN+1];
desiredtupleno=tupleno;
c=1;

inttostr(soundjid, sound -value);
if (llcsrOpen((char *)O,"cursor -output I1","db4",O,media-name) 0) 0)

llwritedb("retrieve(ISfn 1=");
Jlwritedb(media -name);
Ilwritedb(".");
Iwritedb("fid,ISdescrl =");
lIwritedb(media -name);
llwritedb(".descrp");
IIwritedb(')where ");
lIwritedb(media-nanie);
Ilwritedb(".s-id=");
Ilwritedb(sound value);
IlcsrQuery ((char *)Q);
/* 1 Icsropen */

while (look-more==O-)
if (llcsrFetch((char *)0, "cursor-outputl ","db4") !=0) 1

IlcsrRet(l1,32,OISfn 1);
IlcsrRet(l1,32,OISdescr 1);
for (i=O;i<MAXPATH+ 1 ;i++)

if (ISfhl[i]==32)I
file_name[i]=0;
I
else{
file-name[iI=ISfnl[iI;

printf("\nRecord no %d ",j+ 1);
printf('V.Play the sound ? (yin):
if (yes -no -answerO=='y') I

playsound(filename);
IlcsrClose((char *)O,"cursor output 1 "& d4");

IlcsrEFetch((char *)O);

103

if (j==c) {
lookmore = 1;

I
}/* IICSRFECCH *[

I P end while */

} /* end of displaysound 0 *1

/* This procedure get the query description for the media attribute*/
/* from the user phrase by phrase

char process icono
{
char answer, repeat, yes no answer 0;
char query-phrase[DESCRLEN+ 1],

in~phrase[DESCRLEN+ 1];
int i, query-err, query-len, in len, fflag;
char descr[DESCRLEN+ 1];
int show-pid, wait pid;
int imageno;
icond = 1;
do
I

queryerr = 0;
query-len = 0;
queryphrase[0] = W;
printf('NnPlease enter your query description\n\
* noun phrases separate by commas and end with an exclamation mark\n\
* sentence end with a period.\

(end whole description with an empty line):\n");
do /* until query-phrase input *1
I

i =0;
while ((inphrase[i++] = getcharo) != \n' && i < 127);
if (inphrase[i-l] != Nn')
I

inphrase[i-1] = n';
printf ("The phrase is too long, it will be shortened\n");
while (getchar) !- V');
/* End if */

in-phrase[i] = 'NO';
if ((inlen = i) > 1)
I

if (queryjlen + inlen < DESCRLEN)
I

strcat(query-phrase,inphrase);

104

query-ten = query-ten + ien;
I 1* End if *
else
I

printf(t'The last phrase extended beyond the maximum\
description length,\nit w'I be ignored\n");
break;

I /*' End else *
11* End if/

if (!queryilen)
printf('NnAn empty string is not allowed as a query description\

Please type at least a single word:\n");
/* End do */

while ((ien > 1) 11 !query-len); /* end queryphrase input *
printf("The query description now is:\n >%s<cM\n",query-phrase);
Iwhile (query-..err);

strcpy(con[numcon] ,query-phrase);
if (contype[numcon]==1)I
process-icon2 (query-phrase,numcon);

if (contype[numcon]==2)
process-icon3 (queryphrase,numcon);

This procedure handles if there are more than one conditions in the query.

nestedgcondition(choice,temp-table 1 ,temp table2,temp-table)
char choice;
char temp jable 1 [20];
char temp iAble2 [201;
char temp-table[20];

int group-number=O;
* mnt nested-counter=0;

mnt k,l;
* mnt endgroup,i,more,found=FALSE;

char ans,ans2;
endgroup = 0;
more = 0;
numcon=0;
numgroup=-O;

choice=utiity-menu(choice,temp-table I ,temp-table2,temp-table);

1 05

if (choice==VO) I
cond=l;
gcond=-O;

while (more != 1){
while (endgroup != 1) 1
for (i=-O;i < attndex;i++)

if (choice=-'O') I
if (in> 1) I
printf('\rffnter table name')
gets(tab[numconl);
strcpy (table-array[tablejindex] .table_name, tab[numcon]);

if (m=4-) j
strcpy (tab[numcon], stab[OI.t_name);

if (choice=='O') I
cond=1;
gcond=-O;
printf('NnEnter attribute")
gets(att[numcon]);
getattype(tab[numcon), att[numcon] ,atttype[numcon]);
if (strcmp(attype~numcon] ,"image")==O)
I
contype[numcon]=1;
process icono;

else if (strcmp(atttype[numcon],"sound")==O)
I
contype~numcon)=2;
process icono;
I

else
printf("Enter the condition Nn");
gets(con~numcon]);
contype~numcon]=O0;

I
)/*end if choice==-O

nested-counter=nested -counter+ 1;
if ((nested -counter%2)==l)I
if (choice='O')j

cond=1;
gcond-O;

106

ql -retrieve(temp-table8);
*ql-printdata(temp-table8); */
cond=0O;
numcon=-O;
numgroup=0O;
imitbuffer(tab, 10);
init-buffer(att, 10);
for (k=O; k< 10; k-tt){

* for (1=0; 1<100; 1++)l
con[k][1]='O';

if (choice==''){
tempi-exists -temnp2(temnp-jable 1, temnpjable2, tempjtable8);
ql-printdata(temp-table8);
init-bufferojoin-for-nested,99);
I
if (choice=='2')

temp 1 -not-exists-temp2(temp_:able 1, temp table2, temp table8);
ql-printdata(temp-able8);
init-bufferojoin-for-nested,99);
I
if (choice=='3)

templ 1 jn emp2(temp-table 1, temp-table2, temnp- able8);
ql~printdata(tempjable8);
init -buffer(condition-for-nested, 100);
init-buffer(attribute-for nested,20);

if (choice=='4')
temp lnot -n -emp2(tempjable 1, temp-table2, temp table8);
ql-printdata(temp_:able8);
init-buffer(condition-for-nested, 100);
iitbuffer(attribute-for nested,20);

/*end if nested-counter%2==1 *

if ((nested-counter%2)==0O)(
if (choice=-='0') {
cond=1;
gcond=0;
ql -retrieve(tempjtable9);

1*ql-printdata(temp-able9); */
cond-O;

107

numcon=0;
numgroup=0O;
init -buffer(tab, 10);
imit-buffer(att, 10);
for (k=0; k<10; k-i-i){

for (1=0; 1<100; 1++){
con[k][1]='0';

if (choice-'IU){
templ Lexists emp2(temp-jable 1, temp-jable2, temp..jable9),
qlprintdata(tempable9);
init-buffer~oin-for-nested,99);
I
if (choice=='2'){

temp lnot-existsjemp2(temp-table 1, temp-table2, temp-table9);
qlprintdata(temp..table9);
initbufferojoinjfor _nested,99);

if (choice=-3'){
templ ljn-emp2(temp-able 1, temp table2, temp table9);
ql-printdata(tempjXable9);
init -buffer(condition-for nested, 100);
init-buffer(attribute-for nested,20);

if (choice==-'4')f
temp I not -n -emp2(tempjable 1, temp-.jable2, temp-able9);
ql-printdata(temp-Mble9);
iit buffer(condition-for nested, 100);
init-buffer(attribute-for nested,20);

J/* end if nested-counter%2==0 *

if (nested-counter==2)l
1* printf'Wnelow is the result of the first %d conditions in group %d :,nested-counter,

group-number+ 1); */
/* printf'Wnefore intersection.. .nested-counter->%d",nested-counter);*/

intersect tables(temp-table8,temp-table9,temp-table 10);
1* qi-prntdata(temp-table 1O);*/

drop jable(tempable8);
drop jable(temp_ jable9);

108

if (nested -counter>2){
if ((nested-counter%2)==1){

P* printf('\nBelow is the result of the first %d conditions in group %d :,nested_counter,

group-number+ 1);*I
/* printf('\Nrfefore intersection... .nested -counter->%d",nested -counter); */

intersect-tables(tempjtable 1 ,temp-table8,temp table 11),
/* qLprintdata(tempjtablel11);*/

drop-able(temp-able8);
drop-able(temp-.table 10);

if ((nested-counter%2)==-O){
1*printf('N\nBelow is the result of the first %d conditions in group %d :", nested_counter,

group-number+l1);*/
P* printf("\Naefore intersection.. .nested -counter->%d",nested-counter); */

intersect-tables(tempjtable 11,temp-table9,temp-table 10);
/* qlprintdata(temp-table 10); */

drop-table(temp-tablel11);
drop-able(temp-able9);
I

11* end if nested-counter>2 *

P*I1*11* end if '1 <=choice=<'4- -- deneme --

printf('NnEnd group ?");
ans=yes no-answer();
if ((ans==12I11I(ans==89))1
group-number--group-number+ 1;
if (groupnumber= 1)j

if (nested-counter-=1)l
union-tables-for-nested(tempjtable8, group I);

1*printf("\nBelow is the result of group %d : ",group number);
ql-printdata(group 1);*f
drop-able(temp-able8),

if (nested-counter> 1)1
if ((nested-counter%2)==-O)t

union-tables_for-nested(tempjtable 10, group 1);
1*printfQ(nWelow is the result of group %d : ",group-number);

ql-printdata(group 1);*/
drop-able(temp-jable 10);

if ((nested-counter%2)==1){
union-tables-for jiested(temp-jable I1, group 1);

1*printffAnBelow is the result of group %d : ",group-number);
ql-printdata(group I);*/

109

drop-table(temp-tablel11);
I

1/* end if nested-counter > 1I~
)/*end if group-number==l 1

if (groupnumber==2) {
if (nested-counter==l
union-tables-for-nested(tempj-able8, group2);

1* printf(Wnelow is the result of group %d :',group number),
ql-printdata(group2);*/
drop-able(temp-able8);

if (nested-counter>1
if ((nested-counter%2)==0O)t

union-tables-for-nested(temp-table 10, group2);
1*printf('Wnelow is the result of group %d : ",group number);

ql-printdata(group2);*/
drop-table(temp-table 10);

if ((nested-counter%2)==1)4
union-tables-for-nested(tempjtable 11, group2);

1*printf("\nBelow is the result of group %d :'",group-number);
qlprintdata(group2);*/
dropj-able(tempjablel11);

}f* end if nested-counter>1 /
unionjtables (group 1, group2);

1* printf('Wnelow is the result of the first %d groups ",group-number);
ql-printdata(group2);*/
droptable(group 1);

)/*end if group-number=-2

if (groupnumber>2) {
if (nested-counter==1){

union-tables-for-nested(temp-table8, group 1);
1*printf("NnBelow is the result of group %d : ",group-number);
ql-printdata(group 1); */
drop__table(temp_.jable8);

if (nested-counter>1I)(
if ((nested-counter%2)==0){

unioii-tables-forjiested(temp-table 10, group 1);
/*pridflf(Nn~elow is the result of group %d : ",group-number);
ql-printdata(group I);*/
droptable(temptable 10);

It

if ((nested-counter%2)==l){
union-tables-for-nested(tempjtable 11, group 1);
/*printf("\p~elow is the result of group %d :",group-number);
qlprintdata(group I);*/
dropjtable(tempjtable 11);

I
}*end if nested counter>l ~

union-ables (group 1 ,group2);
1* printf('Wnelow is the result of the first %d groups ",group-number);

ql-printdata(group2);*/
drop-able(group 1);

}/* end if group-number > 2 *
nested-counter=-O;
endgroup= 1;

/* printfQAnGroup %d",numgroup);
printf'nCondition %d",numcon);*/
i=600;

1/* end if ans= YES to end group ? *
if ((ans==l1 1t(ans==78))I
choice=utilitymenu(choice,tempjtable 1 ,temp-table2,temp table);
I

} * End for *
}/* END WHILE *

printfQ'NnEnd condition ?");
ans=yes-no-answerO;
if ((ans==l121)l1(ans==89))

if (group-number== 1)1
union-tables-for-nested(grouplI, temptable);
drop-table(group 1);
printfC'\nBelow is the final result :");
ql-printdata(temp-table);

if (groupnum bet> 1)
union-tables-for-nested(group2, temnptable);
drop-able(group2),
printf('\nBelow is the final result :");
ql-printdata(temp-table);

/* if (choice=='O')
group-count~numgroupl .endgroup = numcon- 1; *

endgroup= 1;
more = 1;
i -O;

11* if ans=YES to end condition? *
else

more=0;
endgroup=-O;

nested_counter=0O;
choice=utility-menu(choice,temp-table 1 ,temp-table2,temp-table);

P* group-countnumgroup].endgroup = numcon- 1;
numgroup=num group+ 1;
group-_count[numgroup] .begingroup=numcon;*/

V * end else*/

P 1 End more *
group-number=0O;

This function handles if there is only one condition in the query.

nested_processcondition(choice,temp-tablel1,temp-table2,temp_table)
char choice;
char temp table 1 [201;
char temp jable2 [20];
char temp table[20];
I
char ans2,a;
mnt ij;
gcond=0;
printfQ'%nGroup, condition ? (yin)')
ans2=yesno -ansv~erO;
if ((ans2== 12 l)II(ans2==89))
I
nested~gcon-dition(choice,temp-table 1 ,temp table2,temp table);

I

gcond=0;
choice--utihity-jnenu(choice,temp-table I,temp table2,temp table);
if (choice =9=

cond=l;
if (in> 1)I
printf('Vi nter table name")
gets(tab[0]);

if (m=M1)I
strcpy (tab(OI, stab[0].t name);

112

printfC'\nEnter attribute name")
gets(att[O]);
pnintf('Nn%s %s %s", tab[O), att[O], atttype[Ob);
getatttype(tab[O],att[O] ,atttype[O]);
if (strcmp(atttype[O,image')==0)

contype[O]= 1;
processjlcono;

else if (strcmp(atttype[O],'soundD==0O)
I
contype [0]=2;
process icono;

else
printf("Enter the condition \n");
gets(con[0]);
contype[O] =0;

else
cond=0O;

if (choice=='0')
ql-retrieve(temp-table);

if (choice== 1')
temp 1_exists-temp2(tempjtable 1, temp-able2, temp-able);

if (choice=='2')
temp 1_not-exists-temp2(temp-jable 1, temp-table2, temp jable);

if (choice==3)
temp 1 jn-emp2(temp-able 1, temp-table2, temptable);

if (choice=='4')
temp 1_-not-in-temp2(tempjtable 1, temp-able2. temp-able);

ql-prntdata(temp-table),

I

int i,j;
for (i=0O;i<= table -count;i++)

if (strcmp(tablearray[i.table_name.tab_name)==0O) 1

113

x=i;
y = table-array[i].att entry;
printf('\nTable Name: %s\n",table-array[i].tablename); /* print table name */

printf('n**Attribute****Data Type**");
while (y !=-1)

printf("\n% 13s %s",attarray[y].attname,att-array[y].datajtype);
y = att array[y].next_index;

I /* End while y!=-1*/
if (y-=- 1) 1 printf('W");
i=500;
I * Exit loop */

/ *End if */
} /* End for */
}
** ******* ** **** **** *********** * ***** **** *** **** *** **

* Generate the result table for retrieval process *
/* This procedure process the query and condition */
* By using the selectarray and conditionarray */
* also grouparray */

ql-retrieve(temp-.table)
char temp-table[201;
I
int d,er;
int i,j,k,l:
char grnum,medianum,operator[4];
i--0; /* set up index to 0 *

/* Below is the embeded C code for the SQL C for INGRES */
/* This is equivalent to the SQL query */
I* exec sql select (varl, var2, ...)
from (tablel, table2,...)
where (conditionl and/or condition2 and/or ...);

k--0;
i=0;

j=0 ;
1--0;

r=0;

Ilsqlnit((char *)0);
Ilwritedb("retrieve into ");
Ilwritedb(tempjtable);
Hwritedb("(");
for (i=0;i<n- 1 ;i++) {
Hwritedb(satt[i] .tname);

114

Ilwritedb(".');
Iwritedb(satt[i] .aname);
Ilwritedb(",');

} * end for ~
IIwritedb(satt[i] .tnarne);
Ilwritedb(".");
llwritedb(sattfi] .a-name);
llwritedb(Q)');
if (cond==-O)

if (m>1) f
Iwritedb("where(");
llwritedbojoin-condition);
Ilwritedb(")");

if (cond==1)
Iwritedb("where(");

if (m>1)I
Hwritedb('(");
lIwritedbojoin-condition);
Ilwritedb(")"),
Ilwritedb(" and)

if (gcond==O)
if (contype[O]==O)
IIwritedb(tab[OI);
llwritedb(".");
Ilwritedb(att[O]);
lIwritedb(con[O]);
I 1* end if */
if (contype[O]==1)
Ilwritedb(tab[OI);
lIwritedb(".");
Ilwritedb(att[O]);
Ilwritedb("=');

tempLmedia -name[O]='p';
medianum=O+48;
tempmedia-name[l1]=medianum;
temp -media -name[21=-O;
IIwitedb(tempmedia-name);

II'writedb(".");
llwritedb("i-id");
I
if (contype[O]==2)

Ilwritedb(tab[OI);
Ilwritedb(".");

115

Ilwritedb(att[O]);
IlwritedbC'=");

temp-media -name [0]='p';
medianum=-0+48;
temp...media -name[1]=medianum.;
temp-media-name[2] =0O;
llwritedb(tempmedia-name);

llwritedb(".");
Ilwritedb('sjid");
I

} /"' end if no group *
Ilwritedb(')9');

P1 end if con=1 *

This function takes two temp tables and unions them and returns

the result to the calling function

union-tables(tempjtablel, temp-table)
char temp-table 1([20];
char temp jable[20];

int c=0,j=0,k=0,l=O,temp, count;
/*char*/ STR name char value[2 1];
char file-name[20] ,a;
int integer...value,media~value,found,media 1 value;
float real-Value;
int i=0O,select=0O;

int g=0;
/*prjjtf(NnpJ.ow we are in union-tables");*/
P~ # line 3169 "db.sc" */1* select *

lIsqlnit((char *)0);
lIwritedb("retrieve(c=(count(");
Ilwritedb(tempjtable 1);
Hlwritedb(".");
lIwritedb(satt[0] .a.-name);
Ilwritedb(")))");
lsqRinit((char *fJ);
if (Ilerrtest() = 0) 1
if (llnextgeto ! = 0)1

flretdom(1,30,4,&c);
I P* lnextget */
lHsqFlush((char *)0);
/* Tlerrtest *

116

I
I*printf('NnThere are %d records in temp-table %s",c, temp jable I);*/

1* # line 3171 "db.sc" *//* host code */
if (llcsrOpen((char *)O, "cursor-Output", "dblI",O,temp-table 1) !=0)
Ilwitedb("retrieve(");
for (select=-O;select<n- 1 ;selecti-i)
lIwitedb(satt[select] .aname);
Ilwvritedb('=");
Hwritedb(tempjtable 1);
Ilwritedb(".");
Ilwritedb(satt[select] .aname);
IHwiitedb(',");

Ilwritedb(satt~selectl.Anane),
I1writedb("=");
Ilwritedb(tempjable 1);
Ilwritedb(". ");
Iwritedb(satt~select] .aname);
Ilwritedb(")");
IlcsrQuery((char *)0);
1 1 IcsrOpen.*

1* # line 3169 "db.sc" *//* select *

Ilsqlnit((char *)Q);
llwritedb("retrieve(g=(count(');
Ilwritedb(temnp-jable);
Ilwritedb(".");
lIwritedb(satt[O] .a~name);
Ilwritedb(")))");
IlsqRinit((char *)O);
if (llerrtest() == 0) 1
if (llnextget() != 0) 1

Ilretdom(1,30,4,&g);
I
IlsqFlush((char *)0);

/*printf'nmbere are %/d records in temp-table %s",g, temp-table);*f

/* # line 3171 "db.sc" */f* host code */
if (llcsrOpen((char *)O,"ctnrsor-output","db2",O,temp-table) != 0)
flwritedb('retrieve(');

117

for (select=0;select<n- 1 ;selecte+)4
Ilwritedb(sattfselect] .aname);
Ilwritedb('=");
Ilwritedb(tempjtable);
Ilwritedb(".');
Ilwntedb(satt[select] .aname);
lIwritedb(",");

Ilwritedb(satt[select] .a-name);
Ilwritedb("=');
Ilwritedb(temp-table);
llwritedb(".");
Ilwritedb(satt[select] .aname);
lIwritedb(")");
llcsrQuery((char *)O);

look -more=0;
1=0;
if (c==0O)
look-more=1;
I

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user *

1* # line 7 "insert.sc" *11* insert *
I
while (look-more ==0)

if (llcsrFetch((char *)O,"curisor output","dbl "!=0)

Ilsqlnt((char *)0);
lwritedb("append to")
Ilwritedb(tempjable);
Ilwritedb("(");
/*printfQ"\nrecord id %ld \i",I 1);*
for (i=0O;i<n-1;i++) I

llwritedb(satt[i] .a~name);
Ilwritedb("=");
if (strcmp(satt~i].data-type,"c20")---O)4

HcsrRet(1,32,0, char-value);
P' printf('"%s : %s",satt~i].a_name,char-value);*/

lsetdom(1,32,0, char-value);
I
if (strcmp(satt[il .datajtype,'integer")==0) 1

118

llcsrRet(l1,30,4,&integer value);
1* printf("%s : %ld ",satt[iI .a name,integer value); */

llsetdom(1,30,4,&integer -value);
I
if (strcmp(satt[i].data -type," float")==0O)I

IlcsrRet(1,31 ,4,&real -value);
1* printf("%s : %8.2f ",satt[i].a_name,real-value);*/

Ilsetdom(1,31 ,4,&real-value);

if (strcmp(satt[i].data type, image")==0)
lIcsrRet(1,30,4,&media -value);

P~ printfC'%s id is %d ",satt~i.aname,media-value);*/
Ilsetdom(1I,30,4,&media value);

if (strcmp(satt[i].data-type,"sound")==0O)
IlcsrRet(l1,30,4,&medial value);

P* printfQ'%s %d",satt[i] .a_name,media 1_-value);*/
Ilsetdom(1,30,4,&media I value);

I
Ilwritedb(",");

I
Ilwritedb(satt[il anrame);
IIwritedb("=");
if (strcmp(satt[i].data-type,"c20")--=0) I

IlcsrRet(1,32,0, char-value);
P* printfQ'%s: %s",satt[i].a-name,char-Value);*I

Ilsetdom(1 ,32,0, char-value);

if (strcmp(satt[i].data-type,"integer")--0) I
IlcsrRet(1,30,4,&integer value);

/* printf('%s: cld ",satt[i].a_name,integerval e);*/
lIsetdom(1,30,4,&integer value);

if (strcmp(satt[i] .datajtype,"float")--=0) I
IlcsrRet(1,31 ,4,&real value);

P~ printfQ'%s : %8.2f ",satt[i].a_nalerealvalue);*/
Ilsetdom(1,31 ,4,&real value);

if (strcmp(satt[iI.data type,"image")==O)
IlcsrRet(l1,30,4,&media value);

/* printf("%s id is %d ",satt[i].aname,media-value);*/
lIsetdom(1 ,30,4,&media value);

I
if (strcmp(satt[iI .data type,"sound")==0) I

IlcsrRet(l1,30,4,&medial -value);
P* printfC'%s */d",satt[i].aname,medialI value);*/

119

Hlsetdom(1,30,4,&media I value);

/pinfNn)*

IlcsrEFetch((char *)Q); /* fetch the next record to the cursor *
1+4-; 1* increment 1 as the counter */
if (1==c) I /* check if no more data to print *
look-more = 1; /* exit of the loop *

1witd(

HlsqSync(3,(char *)0);
I 1* IlcsrFetch *
I/*" end while *

Ilcrls(ca),cro uptdl) *coetecro
IcsrClose((char *)O,"cursor output",'dbl"); 1* close the cursor *

retum(temp-table);

This function takes two temp tables and unions them, puts the result in
temp-tablelI and returns the result to the calling function

union-tables-for-nested(tempjtablelI, tempjable)
char temp_ jable 1[20];
char tempjable[20];

int c=0,j=0O,k=O,l=0O,ternp, count;
/*char*/ STR-name char-value[2 1];
char file name[20] ,a;
int integer _yalue,media.yalue,found,media 1 -value;
float real valut;
mnt i=0,select=O;

mnt g=O;
/*printf("NnNow we are in union-tables-for-nested"');*/
/*' # line 3169 "db.sc" *11* select *

Hsqlnt((char *)Q);
llwritedb("retrieve(c=(count(");
Ilwritedb(temptable 1);
Ilwritedb(".");
flwritedb(satt[0] .a_name);
Ilwritedb(")))");
HsqRinit((char *)0);
if (llerrtest() =)
if (llnextgeto)! 0) 1

120

Hlretdom(1,30,4,&c);
1* Ilnextget. */

IlsqFlush((char *)0);

I*printf('\nlmere are %d records in temp-table %s",c, temp-table j);*/

* 1* # line 3171 "db.sc" *11* host code */
if (IlcsrOpen((char *)0,lcurjsor output","dbl ",0,temp table 1) !=0)

Ilwritedb("retrieve(");
for (select=0;select<n- 1;select+I
lIwntedb(satt[selectl .aname);
I1witedb("=");
Ilwritedb(tempjable 1);
Ilwntedb(".");
Ilwritedb(satt[select] .a-name);
IIwritedb(",");

Ilwritedb(satt[select] .aname);
Ilwritedb("=");
Iwritedb(temp-table 1);
llwritedb(".");
llwritedb(sattf select] .a-name);
llwritedb(')");
IlcsrQuery((char *)Q);
/ 1 IcsrOpen */

Ilsqlnit((char *)Q);
Ilwritedb("create ");
Ilwritedb(temp-table);
Ilwritedb("C");
for (i=0O;i<n- 1 ;i+-.){

* Hlwritedb(satt~i] .a-name);
Ilwritedb("=");
if ((strcmp(satt[i.data ype, "image") == 0) 11
(strcmp(satt[i].daMtype, "sound") == 0) 11

(strcmp(satt[i].data type, "integer") == 0))
Hwritedb("i4,");

else
if (strcmp(satti.data_ype, "float") == 0)
Ilwitedb("f4,");

else
1 /* char datajtype *

121

llwritedb(sattl].datajtype);
IHwritedb(",");

11* End of for loop i/
Ilwritedb(satt[i].a-name);
IIwritedb("=");
if ((strcmp(satt[i].data-type, "image") ==0) 11

(strcmp(satt[i.data-type, "sound") ==0) 11
(strcmp(satt[iJ .data-type, Integer") ==0))

Ilwritedb("i4");
else

if (strcmp(satt[i] .data..type, "float") =-- 0)
Ilwritedb("f4");

else
1* char data-type ~

Ilwritedb(satt[iI.dat&.tpr)

Ilwritedb(")");
IlsqSync(0,(char *)Q);

1* # line 3169 "db.sc" *11* select *

Hlsqlnit((char *)O);
Ilwritedb("retrieve(g=(count(");
flwritedb(temp-table);
Ilwritedb(".");
Ilwritedb(satt(0] .a-name);
Ilwritedb(")))");
IlsqRinit((char *)O);
if (lerrtest() == 0) 1
if (llnextget() ! = 0) 1

Ilretdom(1,30,4,&g);
I
IlsqFlush((char *)O);

/* # line 3171 "db.sc" *11* host code *
if (llcsrOpen((char *)0,"cursor-output","db2",0,temp table) !=0){

llwritedb("retrieve(");
for (select=O;select<n- 1 ;select++)
llwritedb(satt[select] .a-name);
llwritedb("=")

122

Ilwnitedb(tempjXable);
Ilwritedb(".");
Ilwritedb(satt[select] .aname);
Ilwritedb(',");

Ilwritedb(satt[select] .aname);
llwritedb('=");
lIwritedb(tempj-able);
Ilwritedb(".)
Ilwritedb(satt[selectl .a-name);
Ilwritedb(")");
llcsTQuery((char *)Q);

/*pitf('Na");*I

look -more=-O;
1--0;
if (c--=){
look-more=l;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user *

1* # line 7 "insert.sc" *//* insert *
I
while (look-more == 0)
if (llcsrFetch((char *)0,"cursor-output","dbl V) !=0)

llsqlnit((char *)O);
Hwritedb("append to)
lIwritedb(tempjtable);
Ilwntedb("(");
for (i=0;iczn- 1 ;i-s+) I

Ilwntedb(satt[i] .aname);
Ilwritedb("=");
if (strcmp(satt[i].data type,"c20")---0)

lIcsrRet(1,32,0, char -value);
Ilsetdon(1,32,0, char-value);

I
if (strcmp(satt~i].data type,"integer")==0)

IlcsrRet(I,30,4,&integer -value);
Ilsetdom(1I,30,4,&integer value);

if (strcmp(satt~i].data type,"float")--=)
IlcsrRet(1,31 ,4,&real value);

123

Hlsetdom(1,31 ,4,&real-value);

if (strcmp(satt[i].data_type,"image")==0)
HcsrRet(1,30,4,&media -value);
Hsetdom(1,30,4,&media value);
I
if (strcmp(satt[i].data type,'sound")==0)

lIcsrRet(1,30,4,&media ILvalue);
Hsetdom(1,30,4,&media 1 value);

I
Ilwritedb(',");

llwritedb(sattfiI.a name);
flwritedb('=");
if (strcmp(satt[i] .data -ype,"c20")=--0)

IlcsrRet(1,32,0, char-value);
Ilsetdom(1,32,0, char-value);
I
if (strcmp(satt[i] .data type,"integer")==0)

IlcsrRet(1,30,4,&integer _value);
Ilsetdom(1,30,4,&integer -value);

I
if (strcmp(satt[iI .data,...yp,"float")==O)

IlcsrRet(1,31 ,4,&real_value);
Ilsetdom(1,31 ,4,&real-value);
I
if (strcmp(satt[i].datajtype,"image")-==0)

IlcsrRet(1,30,4,&media-value);
Ilsetdom(1,30,4,&media-value);

if (strcmp(satt[i] .datajtype,"sound')==0)
IlcsrRet(1,30,4,&medialI value);
Hsetdom(1,30,4,&medial value);
I

IlcsrEFetch((char *)Q); I* fetch the next record to the cursor ~
1++s; /* increment 1 as the counter */
if (l==c) I I"' check if no more data to print *
look-more =1; /* exit of the loop *

I
H1writedb("))
IlsqSync(3,(char *)O);

) 1* llcsrFetch *
/*P end while */

124

IlcsrClose((char *)Q,"curisor -output","db I "); 1* close the cursor ~
IlcsrClose((char *)0,"cursor _output","db2"); 1* close the cursor ~
retum(tempjtable);

This function takes two temp tables and unions them, puts the result in temp-able
and returns the result to the calling function

union-tables_fordemo(tempjtablel, temp-table2, temp jable)
char temp-table 1 [20];
char temptable2[20];
char temp_ jable[201;

int c=0,j=0,k=O0,l=0,temp, count;
int o=O,p=O;
/*char*/ STR -name char - alue[2 1];
char file-name[20],a;
mnt integer _yalue,media-Value,found,media 1_-value;
float real-value;
int i=0O,select=0O;

int g=0;
/*printf('NnNow we are in union -tables-for-nested");*/
/* # line 3169 "db.sc" *11* select *

IIsqInit((char *)0);
Ilwritedb("retrieve(c=(count(");
Iwritedb(temptable 1);
Ilwritedb(".");
Ilwritedb(satt[0] .a_namne);
Ilwritedb(")))");
lIsqRiit((char *)0);
if (llerrtest() - 0) 1
if (llnextget() != 0)1

Ilretdom(1,30,4,&c);
* } I"' Hnextget */

IlsqFlush((char *)0);
11* Ilenmest ~

/*pnnf(,gThere are %ld records in temp-table %s",c, temp-table I);*/

/* # line 3171 "db.sc" "'If" host code */
if (llcsrOpen((char *)0, "curs~or-Output", "dblI",0,temp-table 1) =0)1

Ilwritedb('retrieve(");
for (select=0;select<n- 1 ;selectt+)

125

Ilwritedb(satt[selectl .aname);
11writedb("=');
flwritedb(tempjtable 1);
lIwritedb(".');
Ilwntedb(satt[select] .aname);
Hwritedb(","),

Hlwritedb(satt[select] .a-name);
Hwitedb("=');I

Ilwritedb(temp-table 1);
Ilwritedb(". ");
lIwritedb(satt[selectl .a-name);
Ilwritedb(')");
IlcsrQuery((char *)O);
1* HcsrOpen */

1* # line 3169 "db.sc" *11* select *

Ilsqlnit((char *)O);
Ilwritedb("retrieve(o=(count(");
Ilwritedb(temp-table2),
Ilwritedb('.");
Ilwritedb(satt[O] .a_name);
IlwritedbC')))");
IlsqRinit((char *)0);
if (llerrtest() == 0)1

if (llnextgeto ! = 0)1
11retdom (1 ,30,4,&o),
}* 1UInextget. */

llsqFlush((char *)0);
I/*' Ierrtest *

1=0;
/*printfC' nThere are %ld records in temp-table %s",o, temp-table I);*/

1* # line 3171 "'db.sc" *//* host code */
if (llcsrOpen((char *)O,"cursorj._utput",'db3",O,temp-table2) !=0)

Hwritedb("retrieve(");
for (select=0;select<n- 1 ;select+s+)
Ilwritedb(satt[select] .a-name);
Ilwnitedb("=");
Ilwritedb(tempjtable2);
Ilwntedb(".");
llwntedb(satt[select] .a-nane);
Tlwritedb(",");

Ilwnitedb(satt[select] a name);

126

Ilwritedb("=");
Ilwritedb(temp-table2);
Ilwritedb(".");
Ilwritedb(satt~select] .aname);
Ilwritedb(")");
IlcsrQuery((char *)0);
1 * lIcsrOpen *

Ilsqlnit((char *)0);
Ilwritedb("create ");
Ilwritedb(tempjtable);
Ilwritedb("(");
for (i=0;i<n-1I;i+-i)

Ilwritedb(satt[i] .a-name);
lIwritedb("=");
if ((strcmp(satt[iI.data.type, "image") ==0) 11
(strcmp(satt[i.data - ype, "sound") == 0) 11

(strcmp(satt[i].datajtype, "integer") == 0))
Ilwritedb("i4,");

else
if (strcmp(satt[iI.data -type, "float") == 0)

llwritedb("f4,"),
else

1* char data-type *
Ilwritedb(sattli].data type);
Ilwritedb(",");

/End of for loop
Ilwritedb(satt[i] .a-name):
lIwitedb("=");

if ((strcmp(satt[il.data-type, "image") = 0) 11
(strcmp(satt(i].data type, "sound") == 0) 11

(strcmp(satt~i] .data.3ype, "Integer") =0))

Ilwitedb("i4");
else
if (strcmp(sattl.data-type, "float") == 0)

Ilwritedb("f4");
else

f* char data-typeI
Ilwritedb(satt[i] .data type);

Ilwritedb(")");
IlsqSync(0,(char *)O);

127

/* # line 3169 "db.sc" *//* select *

lIsq~nit((char *)Q);
Ilwritedb("retrieve(g=(count(");
Ilwritedb(temptable);
Ilwritedb(".");
Ilwritedb(satt[O] .a-name);
Ilwritedb(")))");
IsqRinit((char *)O);
if (lerrest() = 0) j
if (llnextget() ! = 0) 1

llretdom(1,30,4,&g);

HsqFlush((char *)0);

/* # line 3171 "db.sc' *//* host code *
if (llcsrOpen((char *)O,"ciursor-output","db2",O,temp-table) !=0)

Ilwritedb("retrieve(");
for (select=0;select<n- 1;select++)I
Ilwritedb(satt[selectl .aname);
II%,ritedb('=");
Ilwritedb(tempjXable);
Ilwritedb(".");
Ilwnitedb(sattf select) .aname);
lIwitedb(",");

Ilwritedb(satt[select] .aname);
llwritedb("=");
Ilwritedb(temp.3table);
Ilwritedb(".");
Ilwritedb(satt[select] .aname);
Ilwitedb(")');
IlcsrQuery((char *)Q);

/pinfNn)*

look- more=O;

if (C==0) I
look- more=1;

128

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user *

1* # line 7 "insert.sc' *11* insert *
I
while (look-more ==0) j

if (IlcsrFetch((char *)0, "cursor-output", "dbl" 1 0)
Ilsqlnit((char *)Q);
Ilwritedb("append to)
lIwntedb(tempjable);
Ilwritedb("(");
for (i=0;i<n- 1;1++-)

Ilwritedb(satt[i] .a-name);
IwnitedbC'=");
if (strcmp(satt[i] .data_type,"c20')==0)

lIcsrRet(1,32,0, char-value);
Ilsetdom(1,32,0, char-value);

I
if (strcmp(satt[i] .data -ype,"integer")==0O)4

IcsrRet(1,30,4,&integer value);
Ilsetdom(1,30,4,&integer _value);

if (strcmp(satt[i].data -type," float")==0O)I
IlcsrRet(1,31 ,4,&real value);
Ilsetdom(1,31 ,4,&real value);

if (strcmp(satt[i] .data-type,'image")==0)4
IlcsrRet(l1,30,4,&media value);
lIsetdom(1,30,4,&media value);

if (strcmp(satt[i] .data type,"sound')==0O)
llcsrRet(l1,30,4,&media I value);
lIsetdom(1,30,4,&media 1_value);

Ilwritedb(",");

Ilwritedb(satt[i] .a-name);
Iwritedb("=");
if (strcmp(satt~i] .data -type,"c20")==0) 1

IlcsrRet(1,32,0, char -value);
llsetdom(1,32,0, char-value);

if (strcmp(satt[iI .data -type,"integer")==0O)
IlcsrRet(1I,30,4,&integer value);

129

lsetdom(1,30,4,&integer _value);
I
if (strcmp(satt[i].data type,"float")--=O)4

IlcsrRet(1,31 ,4,&real value);
Ulsetdom(1,31 ,4,&real value);

if (strcmp(satt[i] .datatype, image"~)==O) I
IlcsrRet(l1,30,4,&media..yalue);
Ilsetdom(1,30,4,&media value);

if (strcmp(satt[i].data type,"sound")==-O) j
IlcsrRet(1,30,4,&media 1 value);
llsetdom(1 ,30,4,&media I value);

/pint(W)*
IlcsrEFetch((char *)O); /* fetch the next record to the cursor ~
1++i; 1* increment 1 as the counter */

if (1==c) I /* check if no more data to print *
look-more =1; /* exit of thebloop/

flwritedb("))
IlsqSync(3,(char *)O);

11* IlcsrFetch *
}/* end while *

IlcsrClose((char *)O,"curmor output","db2"); /* close the cursor *

/* # line 3171 "db.sc" *//* host code */
if (IlcsrOpen((char *)Q, "cursor-output", 'db2 ",O,temp__table) !=0)
flwritedb("retrieve(");
for (select=-O;select<n- 1;select++)4
llwritedb(satt[select] .aname);
IIwritedb("=");
Iwntedb(temp-table);

Ilwritedb(".");
Iwritedb(satt~select] .a-name);
Ilwritedb(",");

Ilwritedb(satt[select] .aname);
Ilwritedb('=');
Ilwritedb(temp-table);
IlwritedbC'.");
flwritedb(satt[select] .ananie);
Hwritedb(")");

130

IlcsTQuery((char *)Q);

look-More=0;,
1=-0;
if (c==0)
look-more=l;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user ~

1* # line 7 "insert.sc" *11* insert *
I
while (look-more == 0)

if (lIcsrFetch((char *)0,"cursor-output","db3") !=0)
IIsqlnit((char *)0);
Ilwritedb('append to)

Ilwritedb(temp_able);
Ilwritedb("(");
for (i=0O;i<n-1;i++)f

Ilwritedb(satt[i] .aname);
Ilwritedb("=");
if (strcmp(satt[i] .datajtype,"c20')==0)

IlcsrRet(1,32,0, char-value);
Ilsetdom(1,32,0, char-value);
if(tcpstlldtr

if~~~ ~~ (srm~ati dt ype,"integer")==0O)
IlcsrRet(1,30,4,&integer value);
Isetdom(1,30,4,&integer value);

I
if (strcmp(satt[i] .data type,"float")==0O)

IlcsrRet(1,31 ,4,&real value);
llsetdom(1,31 ,4,&real value);
I
if (strcmp(satt[i].data..typ,"image")==0O)

llcsrRet(l1,30,4,&media value);
Ilsetdom(1,30,4,&media value);

I
if (strcnip(satt[i] .datajype,"sound")==0O)

IlcsrRet(1,30,4,&medial -value);
Ilsetdom(1I,30,4,&media 1_-value);
I
Ilwritedb(",");

131

Ilwritedb(satt[i].a name);
lIwritedb("=");
if (strcmp(satt[i].data-type,"c20")==0)I

IlcsrRet(1,32,0, char-value);
Ilsetdom(1,32,0, char-value);

if (strcmp(satt[i] .data -type, "integer")==0O)
IlcsrRet(1,30,4,&integer value);
Ilsetdom(1,30,4,&integer value);

if (strcmp(satt[iI.data type,"fioat")-=0)
IlcsrRet(1,31 ,4,&real-value);
llsetdom(1 ,3 1,4,&real value);
I
if (strcmp(satt[i].data type,"image")=0)

IlcsrRet(1,30,4,&media value);
Ilsetdom(1,30,4,&media value),
I
if (strcmp(satt[i] .data_typ,"sound")==0O)

llcsrRet(l1,30,4,&medial-value);
Ilsetdom(1 ,30,4,&medial-value);

I*printfQ(jV);*/
IlcsrEFetch((char *)Q); 1* fetch the next record to the cursor *
1+-+; 1* increment 1 as the counter */

if (1=-o) I flt check if no more data to print *
look-more =1; I* exijtof the loop*

I
Uwritedb("))

llsqSync(3,(char *)Q);
) I"' IlcsrFetch *

I/*" end while *

llcsrClose((char *)O,"curisor -output","db2"); 1* close the cursor *
IlcsrClose((char *)O,"cijrsor -output", "db I"); 1* close the cursor *
IlcsrClose((char *)O,'#cursor _output","db3"); /* close the cursor ~
return(tempjtable);

This function retrieves the tuples from temp-able I which do not take place in
temp- table2 and puts the result in temp-jable.

minus(tempjtable 1, temp table2, temp jable)

132

char temp jable 1 [20];
char temp-mble2[20];
char tempable[20];

int I;
Ilsqlnit((char *)0);
Ilwhitedb("retrieve into)
Ilwritedb(tempjable);
lwritedb('Q');

for (i=0O;i<n- 1;i++)
Ilwritedb(tempjable 1);
Ilwritedb(".");
llwritedb(satt[i] ~a~name);
Ilwritedb(',");

Ilwritedb(temp-jable 1);
Ilw'itedb('.");
Ilwritedb(satt[i].name);

Ilwritedb(")");

Ilwritedb("where any(");
Ilwritedb(temp-table2);
llwntedb(".all by ");
Ilwiitedb(tempjaMble 1);
llwritedb(".all ");
Hwritedb(" where(");
for (i=0;i<n- 1 ;i++) I

Ilwritedb(tempjaMblel);
IHwritedb(".");
lIwritedb(satt[i].a,_name);
Hlwritedb('V=");
Ilwrtedb(temp-jable2);
Ilwritedb("")
Hlwritedb(satt[i] .name);
Iwritedb(" and")

flwritedb(temp-table 1);
Ilwritedb(".");
llwritedb(satt[i] .a-name);
lw,;ritedb('=");
llwritedb(temp-jable2);
Hwritedb(".");
Ilwritedb(satt[i] .a-name);
Ilwritedb(")");
llwritedb(") = 0");
IlsqSync(0,(char *)0);

133

retum(tempjtable);

This function intersects two tables (1 and 2) and puts the result in tempgtable.

intersect~tables(tempjtable 1, temp-jable2, temp-able)
char temp jable 1 [20];
char temp-jable[20];
I
int i;

/*copy-to file(temp-table 1); */
Ilsqlnit((char *)0);

Ilwritedb("retrieve into)

Ilwritedb(temp-table);
Ilwritedb("(");
for (i=-O;icn- I;ii-i)

flwritedb(temp jAble 1);
Hwritedb(".");
Ilwritedb(satt[i] .aname);
llwritedb(",");

Hwritedb(temp-table 1);
Ilwritedb(".");
flwritedb(satt[i] .a-name);

llwritedb(')");

Ilwritedb(" where(");
for (i=0O;i<n- 1 ;i++) I
Ilwritedb(temp-Jable 1);
Hwritedb(".");
Hwntedb(satt[i].a-name);
llwritedb("=");
Ilwritedb(tempjable2);
Ilwritedb(".");
Ilwritedb(sattfi).a.-name);
IlwritedbC and')

I
Ilwritedb(temnp-jable 1);
llwritedb(".");
llwritedb(satt[i] .a-name);
Ilwritedb('V=");
Ilwritedb(temp-table2);
Ilwritedb(".)
llwritedb(satt~i] a-mne);
Ilwritedb(')");
IlsqSync(0,(char *)O);

134

return(temp..table);

This function retrieves the tuples from temp-jable 1 which are not included in
temp2 and puts the result in temp-table.

tempi not-in-temp2(tempjaMblel, temp table2, temptable)
char temp-able[20];
char temp-table 1 [20];
char temp-table2[20];

int ij;

printfQ'\nWe are in table 1_NOTIN-table2 now");

sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *
IIsqlnit(&sqlca);
Ilwritedb("retrieve into")
Ilwritedb(temp-table);
llwritedb('(");
for (i=0;i<n- 1 ;i+-t)

Ilwritedb(satt~i] .t-name);
Ilwritedb(".)
lwritedb(satt[iJ .a~name);

Hwritedb(",");

Ilwritedb(satt[i] .tname);
flwritedb(".");
lIwritedb(satt[i] .a-name);
llwritedb(")");

Iwritedb("where(any(");
11writedb(tempjtable2);
llwritedb(".");

* Ilwritedb(attribute-for-nested);
/* lIwritedb(".aUl by ");*/
1* lIwitedb(tempMble 1); */

1Hwritedb(" by ");
Ilwritedb(satt[i] .t-name);
llwritedb(".all ");
Ilwritedb("where")
Ilwritedb("(");
Ilwritedb(satt[i] .t-name);

1* Ilwritedb(tempjtable 1);*/
Ilwritedb(".");

135

llwnitedb(condifion-for-nested);
Ilwritedb("=");
Ilwritedb(temp-table2);
Hwritedb(7'.");
Ilwritedb(attribute _for _nested);
Ilwritedb(")");
Iwritedb(') = 0");
if (m>1

Ilwritedb(" and)

llwritedb("(");
lIwntedb~join condition);
Ilwritedb(")");

llwritedb(")");
lIsqSync(0,&sqlca);

if (sqlca.sqlcode ! = 0) 1
printf("\nAn error occurred while accessing the database");
for (j=j+ 1; j<rn; j++) (

init -buffer(temp-jable 1,20);
strcpy(temp-jable 1, stablijl.Lnanle);

sqlca.sqlcode = 0; 1* Initialize as error free before access INGRES *

Iilsqlnit(&sqlca);
Ilwritedb("retrieve into)
Ilwritedb(temp- table);
Ilwritedb("(");
for (i=-O;i<n- 1;i++) I

Hwritedb(satt[iI.t name);
Ilwritedb(".");
Hwritedb(satt~i] .a-name);
IHw~itedb(",");

I
Ilwritedb(satt~i] .t..nsme);
Ilwritedb(.");
llwritedb(satt[i] .a.-name);
1Uwritedb(")");

Ilwritedb("where(any(");
flwritedb(temp-table2);
flwritedb(".");
Ilwritedb(attribute -for-nested);
Ilwritedb(" by ");

/" Iwritedb(".all by)*
Uwritedb(satt[i] .t-name);

136

1* Iwritedb(temp-table 1); */
Ilwritedb(".all "),

llwritedb("where)

Ilwritedb('(");
Ilwitedb(satt[i] .tname);

1* lwritedb(temp_able 1); */
Ilwritedb(".");
Ilwritedb(condition-for nested);
Ilwritedb4?'=")
IIwritedb(tempjtable2);
Ilwritedb(".");
Ilwntedb(attribute-for nested);
Ilwritedb(")");
Ilwritedb(") =0");

if (m>I){I
Ilwritedb(" and")
Ilwritedb('Q');
Ilwritedbojoinscondition);
Hlwritedb(")");

Ilwritedb(")");
IlsqSync(O,&sqlca);

1/* end for j<m *
J/* end if *

This function joins temp 1 and temp2 and retrives the tuples from temp 1 that takes place in temp2
and puts the result in temp-able.

temp ljnemp2(temp-jable 1, temp jable2, temp jable)
char temp jable[20];
char tempjtable 1([20];
char temp-able2(20];

int ij;
j=0;

printf('bnWe are in table I-IN-table2 now");
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *
Ilsqlnit(&sqlca);
Ilwritedb("retrieve into")
llwritedb(tempjtable);
Ilwitedb("(');
for (i=0O;iczn-1;i++)I

137

Ilwritedb(satt[i] .tname);
Ilwritedb(".");
Iwritedb(satt[i] .a~name);
Ilwritedb(",");

llwritedb(satt~i] .t-name);
Ilw'ritedb(".");
Iwritedb(satt~iI.a -name);
Ilwritedb('T');

Ilwritedb('where(");
Ilwritedb(CC);
Ilwritedb(temp-table 1);
l'writedb(".");
Ilwritedb(condition-for-nested);
llwritedb('=");
lIwritedb(tempjable2);
Hwritedb(".");
Ilwritedb(attribute-for-nested);
Ilwritedb(")");
if (m>1

lIwritedb(' and")
Iwritedb("(");
Ilwritedbojoin -condition);
lwritedb(")");

llwritedb(")");
IlsqSync(0,&sqlca);

if (sqlca.sqlcode != 0)4
for j=j+ 1; j<m, j++) (

init -buffer(tempjable 1,20);
strcpy(temp-jablel, stabU].tnamne);
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *
lsqlnit(&sqlca);

Ilwritedb("retrieve into")
llwritedb(tempjable);
Ilwritedb("(");
for (i=-O;i'cn- I;i-i+)

Ilwritedb(satt[i.t-name);
Ilwritedb(".");
Ilwritedb(satt[i] .a-name);
Ilwritedb(",");

I
Ilwritedb(satt[i].t_name);
Hwritedb(".");

138

Ilwritedb(satt[i] a-name);
IlwritedbC)");

Ilwrtedb("where(');
Ilwritedb("(");
Ilwritedb(tempjtable 1);
Ilwritedb(".");
Ilwritedb(condition -for -nested);
IlwritedbC"=");
Ilwritedb(tempjable2);
IHwritedb(".");
Ilwritedb(attribute-for-nested);
HIw'ritedb(')");
if (m>I) I

Ilwritedb(" and")
Ilwritedb("C');
Ilwnitedbojoinscondition);
Ilwritedb(")");

I
IHwritedb("Y');
IlsqSync(0,&sqlca);

}/* end for *
1/* end if *

This function joins temp 1 and temp2 and retrieves the tuples from temnp 1 that do not take place in
temp2 and puts the result in temp-able.

temp Lnot-exists-temp2(temp-table 1, temp-table2, temp jable)
char temp-able[20];
char temp-tablel1 [20];
char temp-able2 [20];

int ij;

printf("\nWe are in tablel1-not-exists-table2 now");
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *

Ilsqlnit(&sqlca);
Ilwritedb("retrieve into)
Ilwnitedb(temp-table);
Ilwritedb("(");
for (i-Oi<n- 1 ;i++) I

Ilwritedb(satt~i] .t_name);
Ilwritedb(".");

139

Iwritedb(satt[i] .a-name);
Ilw'ritedb(",");

Ilwritedb(satt[i) .tname);
Ilwritedb(". "),
Ilwritedb(satt[i] .a~name);
lwritedb(");

Iwritedb("where(any(");
Ilwrtedb(temp-table2);
Ilwritedb(".all by ");
lHwritedb(satt[iI .Lname);

1* Ilwritedb(temp-table1); */
Ilwritedb(".all ");
Ilwntedb("where")
Ilwritedb("(");
lwritedbomijor_nested);
I1writedb(")");
IlwritedbC')=0");
if (m>1)f

Ilwritedb(" and)

Ilwritedb('(");
llwritedb~join-condition);
Ilwritedb(")");

I1writedb(")");

llsqSync(O,&sqlca);

if (sqlca.sqlcode != O)j
printf'Wnrror occurred while accessing the database");
for (j=j+ 1; j<mn; j++) (

init -buffer(tempjtable 1,20);
strcpy(tempjable 1, stabUl .tnanie);
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *

Ilsqlnt(&sqlca);
Ilwnitedb(tempjtable);
Hwritedb('(");
for (i=0;i' n- 1;i++) 1

Ilwritedb(satt~i] t-name);
Hwritedb(".");
Ilwnitedb(satt[iI .a-name);
Hlwritedb(",");

Hwritedb(satt[i] .tname);

140

Llwritedb(".");
Ilwritedb(satt[i] .aname);
lwri~tedb(")");

Ilwntedb('where(any(");
Ilwritedb(temp_table2);
Ilwritedb(".all by ");
Ilwnitedb(satt[i] .t-name);
/*Ilwrtedb(temp table 1); *
lIwritedb(".all ");

Ilwritedb("where")
I1writedb("(");
Ilwritedbojoin-for-nested);
llwritedb(")");
IHwritedb(")=0O");
if (m>1)f

lIwitedb(" and")
I1'wntedb("(");
Iwritedbojoin condition);
Hwritedb(")");

I
llwritedb(")");
IlsqSync(O,&sqlca);

1/* end J<m *
}/* end sqlca.sqlcode != 0 *

This function retrives, the tuples from temp I that exists in temp2 and puts the
result in temp-able.

temp I -exists-temp2(tempjable 1, temp-table2, temp jtable)
char temp-table[20];
char temp jable 1([20];
char temp table2[20];

mnt ij;

printf('\.nWe are in table 1_-exists -table2 now");
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES *

Ilsqlnit(&sqlca),
Ilwritedb("retrieve into")
Ilwritedb(temp-table);

141

llwritedb("(");
for (i=O;i<n-1;i++)

Ilwritedb(satt[i] .tnae);

Iwritedb(satt[i] .aname);
llwritedb(",");

Ilwritedb(satt[i] .t.name);
lIwritedb(".");
Ilwritedb(satt[i] .aname);
Ilwritedb(')");

Ilwritedb('where(");
Ilwritedb("(");
Iiwritedbojoin -for -nested);
Ilwritedb(")");
if (m>1){

Ilwritedb(" and)
Ilwitedb('Q');
llwritedb~join-condition),
Iwritedb('Y');

Ilwritedb(")");
IsqSync(0,&sqlca);

if (sqlca.sqlcode != 0)j
for (j=j+1; j<m; j++) I

imit-buffer(temp-table 1,20);
strcpy(temp-table 1, stabUj] .tname);
sqlca.sqlcode =0; /* Initialize as error free before access INGRES *

Ilsqlnit(&sqlca);
llwritedb("retrieve into")
lIwritedb(tempjtable);
Ilwritedb("(");
for (i=-O;i<n- 1 ;i++)

I1writedb(satt~i] .tnane);
Ilwritedb(".");
Ilwritedb(satt~i] .4nanie);
Ilwritedb(","f);

I
Hwritedb(satt[iI .tnanie);
Ilwritedb(".");
Ilwntedb(satt~i] .a-name);
Iwritedb(")");

142

Ilwritedb("where(");
I1writedb("(");
Ilwritedb~join-for-nested);

if (m>1)1
Ilwritedb(' and ;
Ilwritedb("(');
Ilwritedbojoin condition);
lIwritedb(")");

Ilw-ritedb(")");
IlsqSync(O,&sqlca);

1/* end if j<m *
/*end for *

This function calculates the number of tuples retrieved in the result table and prints the number of
tuples.

void print count(tempjable, i)
char temp- able[201;
int 14k

int t=-O;

llsqlnit((char *)O);
Iwritedb("retrieve unique(t=(");
lIwritedb("count");

Ilwitedb(tempjable);
Ilwntedb(".");
Ilwritedb(satt[i] .a-name);
Ilwritedb(')))");
flsqRinit((char *)O);
if (llerrtest() - 0) 1

if (Hnextgeto ! = 0) 1
lIretdomk 1 ,30,4,&t);
1* IRInextget */

IlsqFlush((char *)O);
1 * Ilerrtest *

printf("COUNT(%s) = %d ",satt[i].a name, t);

This function calculates the sum of a cloumn retrieved in the result table and prints the sum.

143

void printsum(tempable, i)
char temp- jable20];
int i;

int t=0;,

Isqlnit((char *)Q);
IIwi-itedb("retrieve umique(t=(");
Ilwritedb("sum");
I1writedb("(");
Ilwritedb(tempgtable);
Ilwritedb(".");
llwritedb(satt~i].a_name);
Hwritedb(")))");
IlsqRimt((char *)O);
if (flerrtest()= 0) 1

if (llnextget() ! = 0) 1
lIretdom(1,30,4,&t);
J/* Ilnextget */

llsqFlush((char *)fJ);
) * Ilerrtest *

printfQ'SUM(%s) = %d ",satt[i].anaxne, t);

This function calculates the average of an attribute of a tuple retrieved in the result table and
prints the average.

void printavg(temnp-jable, i)
char tempjablel20],
int i;

mnt t-0;

Il sqlnt((char *)Q);
Ilwritedb("retrieve unique(t=(');
Iwritedb("avg");
Ilwntedb("(");
Hwnitedb(tempMble);
Ilwritedb(".");
Hwritedb(satt[iI .a_name);
Ilwritedb(")))");
llsqRinit((char *)0);
if (llerrtest() = 0) 1

if (llnextgeto ! = 0)1
Ilretdom(1,30,4,&t);

144

I /* Ilnextget */
IlsqFlush((char *)O);

1/* Ilerrtest *

printf("AVG(%s) = %d",satt[ii~a name, t);

This function finds the max of a coloumn of a tuple in the temp-table and prints the max.

void print-max(temp-table, i)
char temp-table[201;
int i;

nt t=O;

Ilsqlnit((char *)O);
Ilwritedb("retrieve unique(t=(");
lIwritedb("max");
I1writedb("(");
Ilwritedb(tempjtable);
IHwritedb('.");
Ilwritedb(satt[i] .a~name);
Ilwritedb(")))');
lIsqRimt((char *)O);
if (llerrtest() == 0)1

if (llnextget() ! = 0) 1
Ilretdom(1,30,4,&t);
/ * Ilnextget */

llsqFlush((char *)O);
}/* Ilerrtest *

printf("MAX(%s) = %d ",satt[i].a,_name, t);

This function calculates the min of an attribute of a tuple retrieved in the temp-able and prints the

void print-min(temp-table, i)
char temp-able[20];
int i;

mnt t=-O;

Ilsqlnit((char *)0);
Ilwritedb("retrieve unique(t=(");
Ilwritedb("min");

1 45

llwritedb("(');
Ilwritedb(tempjable);
Ilwritedb(".");
Ilwritedb(satt[i] .aname);
IIwritedb(")))");
IlsqRinit((char *)Q);
if (llerrtest() = 0)1

if (llnextgeto ! = 0) 1
Ilretdom(1,30,4,&t);
1 1* Ilnextget */

llsqFlush((char *)0);
11* Ilerrtest *

printfC'MIN(%s) = %d ",satt[i].ananle, t);

This function checks the aggregate type in the struct satt and calls the appropriate function.

print...aggregates(tempjable)
char temp-able(20];

int v;
for(v=O; v<n; v4-+) I
if (satt~v] .aggregatejtype== 1)
printsount(temp-table, v);

if (sattivi .aggregate..tpev 2
printsum(temp-table, v);

if (satt[v] .aggregate..type==3)
print-avg(temp-Able, v);

if (sattivi .aggregate-type==-4)
print...max(temp-table, v);

if (satt~v] .aggregate-type==5)
print-min(tempjtable, v);

This function prints the tuples retrived in the result table.

print.resuilttable(temp-jable,flag,c)

char temp-able[20];
int flag,

int c;

int v;
int j=O,k=O,1=0O,temp,select=O;
char char-value(21],a, Ans;

146

char file-name[20];
int integery-alue,media..yalue,found,media I value;
float real-Value;
int record -d;
int i=0;
c=0O;

/* # line 3169 "db.sc" *11* select *

* Ilsqlnit((char *)0);
Iwntedb("retrieve unique(c=(count(");
llwntedb(tempjable);
Ilw'ritedb('. ");
Hwritedb(satt[0I .aname);
llwritedb(")))");
IlsqRimt((char *)0);
if (llerrtest() == 0) 1
if (Llnextgeto ! = 0){

Ilretdom(1,30,4,&c);
/ * llnextget */

IlsqFlush((char *)0);
1 * Ilerrtest *

140;
if (flag==FALSE){

printf("\nThere are %d records that match the query",c);

if (c==0O) I
printf(\naPress ENTER to continue...");
a=getcharo;
return;

1* # line 3171 "db.sc" *//* host code ~
if (llcsrOpen((char *)0,h"cursor-output", "dblI ",O,temp table) !=0){

lIwritedb("retrieve (");
* for (select=0;select<n- 1;select-H.)I

lIwritedb(satt~select] .aname);
Ilwritedb("=');
Ilwritedb(tempjtable);
llwritedb(".");
Ilwritedb(satt[selectl .a.name);
flwritedb(",");

Ilwritedb(satt[select] .anae);
Ilwritedb("=");
Ilwritedb(tempjtable),

147

llwritedb(".");
Ilwritedb(satt[selectl .aname);
Ilwritedb(")");
IlcsrQuery((char *)O);
/ * IlcsrOpen *

printf('Nn");
look -more=0;
1--0;
if (c==0)
look-more=1;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user *

while (look-more == 0) 1
if (fl[csrFetch((char *)0,"cursor output","db 1") !=0)

printf("record id Old \t",l+ 1);
for (i=0O;i<n;i++) I

if (strcmp(satt[i] .data...type,"c20")==0) I
IcsrRet(1I,32,0,char value);

if (satt~i] .aggregatejtype==0O)
printf("%s :%s",satt[i] .aname,char-value);

if (strcmp(satt~iI .data type,"integer")==0)
IcsrRet(1,30,4,&integer value);

if (satt[i] .aggregatejtype==0O)
printf("%s: %d ",satt[i] .aname,integer__value);

if (strcmp(satt~i].datajye"la"=0 V

IlcsrRet(1,31 ,4,&reaI value);
if (satt[i] .aggregate-type==0)
printf("%s: %8 .2f ",satt[i] .a namereal-value);

if (strcmp(satt~i] .datajtype,"image")==0O)
HcsrRet(1,30,4,&media-value);

if (satt(iI.aggregatejtype==-0)
printf("%s id is %/d ",satt[i] .aname,media-value);

if (strcmp(satt~i] .datajtype,"sound")==0) I
UcsrRet(1,30,4,&medial -value);

if (satt~iJ .aggregate..jype-==0)
printf("%s id is %d",satt~i] .a namne,media I -value);

I
I 1* end for select < n*I

IlcsrEFetch((char *)0); /* fetch the next record to the cursor ~

148

1++; * increment 1 as the counter */
if (1==c) { /* check if no more data to print */
lookmore = 1; /* exit of the loop *1

I
printaggregates(temp-table);
printf('n");

I /* IlcsrFetch */
/* end while */

IlcsrClose((char *)O,"cursor output","dbl"); /* close the cursor */
if (flag==FALSE) I

printf("Press ENTER to continue ..");
a= getcharo;

I
/* this for the check for the media selection */

if (c--0) I
i=9999;
I

/* if there are some aggregate functions print their results *f
/* print_aggregates(temptable);

printf(" NPress ENTER to continue ..");
a= getchar0;*/
return(c);

I

This function gets the image id of a tuple in the result table so it can locate the image in
the image table associated with the result table for the delete and modify procedures.

getjimagejid(r,imageid)
int r;
int imagejid;

int sound-id;
int entry;
int desired tuple;
char cjtemp[60];
int count--O;
int j--O,k=0,l--Otemp;
char char_value[2 I],a;
char file name[20];
int img-value, sndvalue;
int integeryvalue,media-value,found,media 1 value;
float realvalue;
int i=O,select=O;

mit g=O;
int d;

149

i-value[i index] =0;
desired-uple=r;

1* # line 3169 "db-sc" *//* select *

IlsqInit((char *)0);
Ilwritedb("retrieve(g=(count(");
llwritedb(tempjtable);
Ilwritedb(".');
flwritedb(satt[0] .a~name);
Hwritedb(")))");
IlsqRinit((char *)0);
if (llerrtest() == 0) 1

if (llnextget() != 0)(
Ilretdom(l1,30,4,&g);
1* P"lnextget */

IlsqFlush((char *)L3);
/* H'Ierrtest *

1=0;
if (g-=0)
printf("ViPress ENTER to continue...")
a--getcharo;
return;

/* # line 3171 "db.sc' *//* host code *
if (llcsrOpen((char *)0,"cursor Output","db2",O,temp table) !=0){
llwitedb("retrieve(");
for (select=0;select<n- 1 ;select++)
Ilwritedb(satt[select] .ajiame);
Ilwritedb("=');
Ilwritedb(temp-mble);

Ilwritedb(satt[select] .aname);
Ilwritedb(",");

lIwritedb(satt~select].a name);
Ilwritedb("=");
Ilwritedb(ternp-able);
Ilwritedb(".");
Ilwritedb(satt[select] .a-name);
Ilwritedb(")");
IlcsiQuery((char *)0);
I/* llcsrOpen *

printf('\n");
look -more=0;
1=0;

150

if (g=4J) I
look-more=1;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time
until no more record to print to the user ~

while (look-more == 0) f
* if (IlcsrFetch((char *)G,"cur]sor outpuC',"db2") !=0)

if (desred -uple == 1) 1
printfQ'record id %d \t",l+ 1);

I
for (i=0;i<n;i++)
if (strcmp(satt[i] .datatype,"c20")=0O)

IlcsrRet(l1,32,0,char value);
if (desired_tuple == I

printfC'%s : %s",satt~i] .aname,char-value);

if (strcmp(satt[i].data -type," integer")==0O)
lIcsrRet(1,30,4,&integer _value);
if (desired -tuple = 1) 1

printfC'%s : %d ",satt[i] .a_name,integer value);

if (strcmp(satt[i] .data -ype,"'fioat)--=O)
IlcsrRet(1,31 ,4,&real value);
if (desired_tuple I)(
printf("%s : %8.2f ',satt[i].aname real-value);

if (strcmp(satt[i].data -type,"'image")==-O)I
IlcsrRet(1,30,4,&media value);
if (desired__tuple ==I)

imagejid-media-value;
* printfQ'%s id is %d ",satt[i].a name,media value);

if (strcmp(satt[iI.data type,"sound")==0)I
[IcsrRet(I 1 30,4,&media 1 -value);
if (desired_tuple =~

f*sound-id-medialI value;*/
printf('%s %/d",satt[i] .a name,media 1_-value);

1/4tend for select n*/

151

IlcsrEFetch((char *)O); /* fetch the next record to the cursor *
l++; 1* increment 1 as the counter *
if (1==g) I 1* check if no more data to print ~

look-more = 1; 1* exit of the loop *

1/* IlcsrFetch ~
1 I" end while */

lIcsrClose((char *)O,'cwrsor output",'db2"), /* close the cursor *

printfC'NnPress ENTER to continue ..");
a= getcharo;
return(imagejid);

This function gets the sound id of a tuple in the result tableto find the associated sound data
and delete it. Used in delete and modify operations.

get-Sound id(r,sound id)
int r,
int soundjid;

mnt image jd;
nt, entry;

mnt desired juple;
char cjemp[60];
mnt count=-O;
int j=O,k=O,l=-O,temp;
char char -value[2 l],a;
char file name[20);
int imgvyalue, snd-value;
int integer..value,media-yalue,found,media I value;
float real-Value;
mnt i=O,select=O;

int g=O;
nt d;
_-valueiindex=-O;

desired juple=r,
/* # line 3169 "db.sc' *//* select *

Hlsqlnit((char *)O);
Hwritedb('retrieve(g=(count(");
Ilwritedb(tempjable);
Ilwntedb(".");
Ilwritedb(satt[O1.anrane);
IHwritedb(")))");

152

HlsqRimit((char *)0);
if (Herrtest() - 0) 1

if (Hnextget() != 0) 1
Ilretdom(1,30,4,&g);
/* lnextget */

IlsqFlush((char *)O);
}/* Ierrtest *

1=0;
if (g==0) I
printfC'naPress ENTER to continue...");
a--getcharo;
return;
I
1* # line 3171 "db.sc' *//* host code *

if (llcsrOpen((char *)0,"cursor OutputX"db2",O,temp-table) !=0) 1
Ilwntedb("retrieve(");
for (select=0O;select<n- 1 ;select+4-) I
Ilwritedb(satt[select] .ananie);
Ilwritedb("=");
lIwitedb(tempjtable);
llwritedb(". ");
lIwritedb(satt[select] .aname);

I lrtd(,)

Ilwritedb(satt[select] .a-name);

Hlwritedb(temp-table);

Ilwritedb(satt~select] .aname);

IlcsrQuery((char *)Q);
/* HcsrOpen *

printf('\n");
look -more=0;
1=-0;
if (g--=)I

look-more=1;
I
/* Fetch the cursor to the result relation which is the intermediate table

hold the result from the query, then print out the tuple one at a time
until no more record to print to the user *

while (look -more == 0) 1
if (HcsTFetch((char *)O"cw-sor-output","db2") != 0) 1
if (desired~tuple == 1) 1

153

printf("record id %ld \",l+ 1);
I

for (i=-O;i<n;ie+)
if (strcmp(satt[i.data - ype, "c20")==O) I

llcsrRet(l1,32,O,char value);
if (desired_tuple == 1) 1

printf("%s : %s",satt[i].aname,char-value);

if (strcmp(satt(i] .data-type,"integer")-==O) I
IlcsrRet(1I,30,4,&integer value);
if (desired-tuple = 1)(

printf("%s : %ld ",satt[i] .a-nane,integer value);

if (strcmp(satt[i] .data_type,"float")==O)(
IlcsrRet(1,31 ,4,&real value);
if (desired -tuple = 1)41

printf("%s : %8.2f ",satt~i] .ajiamereal value);

if (strcmp(satti.data.type,"image")-==O)
IlcsrRet(1,30,4,&media -value);
if (desired -tuple == I) I
1* image -d-media -value;*/
printf("%s id is %d ",satt[i] .4ane,media value);

if (strcmp(satt~i] .data-ype,"sound")==O) I
IlcsrRet(1,30,4,&medial 1 value);
if (desired_tuple = 1) 1

sound -id=medial -value;
printf("%s %/d" ,satt[i] .a name,media 1_-value);

)/*end for select n*I
IlcsrEFetch((char *)O); 1* fetch the next record to the cursor *
1++, /* increment 1 as the counter */
if (1l=g) I /* check if no more data to print ~

look-more =1; /I8 exit of the loop *
I
/* P' csrFetch *
/end while *

llcsTClose((char *)O,"cursor Output,db2F"); /* close the cursor *
return(soundjid);

'54

This function calls the function print result-table and then queries the user if he wants to display
any media data.

ql-printdata(temp-able)
char temp-table[20];

int imageald=O;
int soundjid=-O;
int c=Oj=O,k=O0,l=O,temp,select=O;
char char-value(21],La, Ans;
char file name[20];
mnt integer-value,media-value,found,media 1 _value;
float real-value,
int record-id, flag=FALSE;
int i=O0;
c=print result-table(te-mpjtable, flag, c);
flag=TRUE,

for (k=O;k<n;kt-i)
if ((strcmp(satt[k] .data -ype," mmage")==O)1l(strcmp(satt[k] .datajype, "sound")==-O))
if (strcmp(satt~k] .datatype, ifimage")==-O)
printf('\nDo you want to display any media data ? (yi)");

if (strcmp(satt[kI.data type,"sound")==-O)
printf("\nDo you want to display any media data ? (yin)");

Ans=yesno-answero;
if ((Ans=1l21(Ans- 89))j

for (k=-O;k<n;k++)
if (strcmp(satt[kI data-type,"image")==O){

Ans = 12 1;
while ((Ans == 121) 11 (Ans = 89)){

if (c>1)f
pnintf('\NrnWhich tuple's image do you want to see? (enter record id) :)
scanif("%/d", &record-id);
getcharo;
printf("record-id -- > %d", recordjid);

if (c==l)
record-id=l1

if (c==O)
goto final;

j =record-id - I;
imagejid=get-image-doimage-id);

155

for (i=O;i<n;i++)j
if (strcmp(satt[i] .data-type,'1image")==O)I

strcpy(table-array[tablejindex] .table-name, sattl] .t-name);
found = check-table-nameO;
table-cursor = table-entry;
strcpy(media-name,satt[i] .a_name);
get-media-nameo;
display-photo(i,j ,temp-table,imagejid);

printf('NnDo you want to see more image data ? (YIN) :)

Ans=yes no answero;
if ((Ans== 12-1)I(Ans==89))

print resultjtable(temp-table,flag);
if ((Ans==l10)I(Ans==78))

goto next;

next:
for (k=O;k<nk-H)
if (strcmp(satt~k] .datajtype,"sound")==-O)

Ans = 12 1;
while ((Ans == 12 1) 11 (Ans ==89)

print result-table(temp-table, flag);
if (c>1)f

printfC'NnWhich tuple's sound do you want to hear? (enter record id) :D
scanf("%d", &recortlid);

if (c==1)1
record-id=l1;
I
if (c==-O)

goto final;
j =record-id-i1;
soundjid=get sound-idoj,soundid);
for (i=-O;i<n;i++)I

if (strcmp(satt~i] .data type,"sound")==-O)
printf(AnSound management");
strcpy(table-array[tablejnmdex] .table name, sattil] .t-name);
found = check-table-nameG;
table-cursor = table -entry;
strcpy(media-name,satt[iI.a name);
getmedia-nanieo;
display-sound(ilj ,temp-table, soundild);

156

printf('NnDo you want to hear more sound data ? (YIN) :)

Ans=yes-no-answerO;

11* end if ans=121 (the one at he top) *
* else

k=900,
1/*end if strcmp(datatype=image or sound) *
}/* end for k<n (top one)*

1* Drop table result after finished print *
I*drop-table(temp-table);*I
final:

drop jemipmedia tables 0;

This function drops a table in the INGRES catalog mgmt usually refers to the temp tables.

droptable(table.name)
char table-nanie[20];

Ilsqlnit((char *)0);
Iwritedb("destroy i)

Ilwritedb(table-name);
IlsqS ync(0, (char *)0);

This function initializes an array upto size 100.

init-buffer(buffer,j)
* char buffer[l0];

intj;

int i;
for (i=0O;i<j;i+4.) (

buffer[i] = V

This function drops the temporary media tables used to hold the intermediate results of a query.
To be processed by INGRES, had to call inttostr -integer to string function

157

drop-emp edia-tables()
I
int k;
char l[5];
char tempstring[1001;
for (k=O; WO1; k-i-i){

strcpy(tempstring, "p"');
inttostr(k,1);
strcat(tempstring,l);
Ilsqlnit((char *)0);
Ilwritedb("destroy")
lIwritedb(tempstring);
IlsqSync(0, (char *)0);
init-buffer(temps tring, 100);
init-buffer(1,5);

This function asks the user to enter a join condition for retrieval conditions with AND in them.

void help~join()

int i=-O;
if (in> 1)
strcpy(join - ondition,"?");
while (strcmpojoinscondition,"?")==O) I
printfQ"\nPlease enter your join condition\n(<?> for help!) :)

getsojoinscondition);
if (strcmpojoin-condition,"?")=:=O) f

for (i=-O;i<m;i++) I
printf("\nTable %s ",stab[i] .tname);
p-att(stab[i] .tname);
/* end for loop *

/*I end if need help for join ~
W/end while*/
J I" end if more than I table select ~

This function asks the user to enter three temp table names for intersection.Two for the different
conditions to be intersected and the third for the result table of the intersection.

char get-temp -table -names-for-intersection(tempj able ljempjXable2,tempj able)
char temp jable 1 [20];
char temp..jable2[20];

1 58

char temp-table[20];
I
printf('NnEnter first temp table name :");

gets(buff);
strcpy(temp-table 1, buff);
init_buffer(buff, 100);
printf('AnEnter second temp table name :");

gets(buff);
strcpy(temp-table2, buff);
init-buffer(buff, 100);
printf("\nEnter another temporary table name to hold the result :");
gets(buff);
strcpy(tempjtable, buff);
init-buffer(buff, 100);

return(temp_table 1, temp_table2, temptable);

I

This function shows the user choice intersect/union/minus menu.

char intersect_union_menu(answer)
char answer;
I
answer ='?';

/* while (!('0'<= answer && answer <= '3'))
I*/

cir-scrO;
pnntf('WnIf you want to intersect / union / minus any two temporary tables:\n");

prinff('Nt -n");=

printf('"nl. INTERSECT two tables");
printf(' nA2. UNION two tables");
printf(' -nX3. MINUS");
printf('Nn\tO. Quit");
prnff('Nn\1' = -- ===n");

printf('N'tSelect your choice::
answer = getcharo;
while ((c = getchar0) != n')
; /* Not return do nothing *1

/* } */
return (answer);

** *** ** * ******* ** ** * ** * ******* ** *** *** *** ** * *** ** * ***** ***

This function asks the user if he wants to union/intersect/minus any two tables and puts the result
in temp table.All the function calls for the operations are executed here.

159

query for-intersect-union(choice,temp-table 1 ,temp-table2,temp-table)
char choice;
char temp jable 1 [20];
char temp jable2 [20];
char temp-able[20];

choice = '?';

clr_scro;
while (choice !=V'0)
I

choice = intersect-union menu(cholce)j* print the choice for user select on screen *
switch(choice)/* User select case *
I

caseT P1: create table *
dlr-scro;

printf("\nYour Selection is INTERSECT");
printf('\nffit Return to continue! (Any other key to QUIT!)");
if (getcharO != Vn)

getcharo; /* To let next getcharo work well *
break;

getjtemp-able names-for-intersection(tempjtable 1, temp table2, temptable);
printf('\n*** The result of the INTERSECTION will be kept in temp-table*** %s ***\n",

temp-able);
intersect-tables(tempjtable 1, temp-able2, temp-able);
ql-printdata(temp-table);
break;

case '2'
dlr-Scro;

printf('\nYour Selection is UNION");
printf('\nHit 1"eturn to continue! (Any other key to QUIT!)");
if (getcharo != \n')

getcharo; /* To let next getchar() work wel*
break;

getjtemp-jable names-for-intersection(tempjtablel, tempj able2, temp-table);
printf('i\n*** The result of the UNION will be kept in temp-table*** %s ***\n", temp-able);
union -tables-fordemo(tempjtablel, temp- jable2, temp jable);
ql-printdata(tempjtable);
break;

case '3' P1 create table *
dlr-scro;

printf("\nYour Selection is MINUS");

160

printf('\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() '=\n')

getcharo; 1* To let next getchar() work well ~
break;

getjtemp-table names-for-intersection(tempjtable 1, temp-table2, tempjtable);
pnintf('Wn** The result of the MINUS will be kept in temp-table*** %s **\" temp jable);

* minus(tempjtable 1, temp-table2, temp-table);
ql-printdata(temp-table);
break;

case '0':
clr-scro;

printf("\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() != \n')

getcharo; /* To let next getchar() work well ~
brcak;

break;
I f* End of switch *
/ * End of while choice != '0'

return(choice);
return(tempj;able 1);
return(tempjtable2);
return(tempjtable);

This function displays the user choice different Retrieval operations menu

char show-utility-menu(answer)
char answer;
I
answer ='?'

* I/* while (! ('0'<= answer && answer <= '4))

cir-scro;
printf('Nn\tRetrieval Operations Menu\n");

printf("\n\,t0. Simple Condition");
printf("\n\.tI. tablel where EXISTS table2");
printf("\n\a2. tablel where NOT EXISTS table2");
printf("\n\L3 table 1 IN table2");
printf("\Nrt4. table 1 NOT IN table2");

161

printf("\n Select your choice:: ");
answer = getcharO;
while ((c = getchar0) != V')
; /* Not return do nothing */

/* }*/
return (answer);

I

Ths function calls the function show-utility-menu and calls other functions to process the user's
choice.

utilitymenu(choice,temp-table 1,temp-table2,temp-table)
char choice;
char temp able 1 [20];
char temp-table2[20];
char temp-table[20];

I
choice =7'';
cdr_scrO;

/* while (choice != '0')

I*/
choice = show-utility_menu(choice);* print the choice for user select on screen */
switch(choice)/* User select case */

I
case '1' :* create table */
clr_scro;

printf("\nYour Selection is tablel where EXISTS table2");
printf('nHit Return to continue! (Any other key to QUIT!)");
if (getchar0 != N')
I
getcharo; /* To let next getchar0 work well /
break;

I
printf(nEnter the temp table name related to EXISTS :");

gets(buff);
strcpy(temptable2, buff);
mint_buffer(buff, 100);
printf(NnPlease enter your join condition~nbetween ");

if (m =1)
printf("%s and ", temp-tablel);

if (m>l)
printf("the appropriate table and ");

printf("** %s ** :", temptable2);
gets(buff);

162

strcpy(joinjfor-nested, buff);
int_buffer(buff, 100);
break;

case '2':
clrscro;

printf('\nYour Selection is table I where NOT EXISTS table2");
printf("\nHit Return to continue! (Any other key to QUIT!)");
if (getchar0 != Nn')
{
getcharo; /* To let next getchar0 work well */
break;

J
printf('NEnter the temp table name related to NOT EXISTS :");
gets(buff);
strcpy(temp-table2, buff);
mint_buffer(buff, 100);
printf('NnPlease enter your join condition\nbetween ");
if (m==l)
printf("%s and ", temp_tablel);
if (m> l)

printf("the appropriate table and ");
printf("** %s ** :", temp-able2);
gets(buff);
strcpy(joinfor-nested, buff);
init_buffer(buff, 100);
break;

case '3':
clirscro;

printf('"nYour Selection is table 1 IN table2");
printf('NnHit Return to continue! (Any other key to QUIT!)");
if (getchar0 != n')
{
getcharo; f* To let next getchar0 work well */
break;

I
printf('\nEnter the temp table name related to IN :");
gets(buff);
strcpy(temp-table2, buff);
initbuffer(buff,100);

printf('An~nEnter attribute for ");
if (m=1)
printf("table %s", temp-table 1);
if (m>1)

printf("the appropriate table");
printf(" for condition of IN :");

163

gets (buff);
strcpy(condition-for -nested, buff);
init-buffer(buff, 100);

printf(\ntTable ** %s *", tempjtable2);
printf('V'SELECT ATTRIIBUTE (only one attribute!) :"),
gets (buff;
strcpy(attribute-for-nested, buff);
iit-buffer(buff, 100);
break;

caseW''
cit-scrO;

printf("\nYour Selection is table 1 NOT IN table2")
printf("\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() != Vn')

getcharo; /* To let next getchar() work well ~
break;

printf('ViEnter the temp table name related to NOT IN :");
gets(buff);
strcpy(temp-table2, buff);
init-buffer(buff, 100);

printf('\n\,nEnter attribute for")
if (m=1)
printf("table %s", temp-table 1);
if (m>1)

printf("the appropriate table");
printf(" for condition of NOT IN:")
gets(buff);
strcpy(condition-for-nested, buff);
init-buffer(buff, 100);

printf('Nn\nTable ** %s **", tempjtable2);
pnintf('\nS ELECT ATI'R0B UTE (only one attribute!) :");
gets(buff);
strcpy(attnibute-for-nested, buff);
init-buffer(buff, 100);
break;

case '0
cit-scr();

printf("viYour Selection is NORMAL RETRIEVAL");
printf("\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() != Nni')

164

getcharo; /* To let next getchar(work well */
break;
I

break;
I /* End of switch */

/* 1*/ /* End of while choice != 0' */

retum(choice);
retum(temp_table 1);
retum(temp_table2);
retum(temp-table);

I

This function checks if any attributes with aggregate functions exist in the attributes entered by
the user.

char check-aggregate(buffer, tmp, aggregate-found)
char buffer[13];
char tmp[3];

Iint i = 0;

intjj = 0;
for (jj--O;jj<3;jj++) {
if (buffer[i]=--40) {
/* tmpj]=v';*/
jj=lO00;
I
elsef

tmpljj]=buffer[i];
I
i++;

I /* end forjj <3 *
tmp[3='\0 ';
if ((strcmp(tmp,"cnt")==0)IU(strcmp(tmp,"sum")=--0)11(strc-

mp(tmp, "avg")-=0)I(strcmp(tmp,"min")==0)I(strcmp(tmp,"max")==))
aggregate found=TRUE;

I
retum(aggregate-found);

I

When there is an aggregate function among the attributes entered by the user, this function sepa-
rates the attribute from the aggregate part.

char get attribute(buffer, attribute)
char buffer[13];
char attribute[13];

165

int I = 4;
int J;
for (j=Oj<13;j++){
if (bufferbi]==41

attributeUj]= Vi;
j=1OO;
I
else(

attributebl=bufferdiI;

i=i+ 1;
II/*end forj < 13*
retum(attribute);

When mod is modify mode (MOD-MODE) this function is the main function calling other other
functions to delete the tuples from the related media tables.

void delete-for-modify(r)
int r;

mnt j=O,k=O,l=O0,temp;
char char-value[2I]La;
char file_name[201;
mnt integer..yalue,media value,found,media 1_-value;
int im -value, so-value;
int desired-tuple;
float real-value;
mnt i=O,select=O;
mnt c=-O;
desired juple=r; /* keeps track of number of tuples *
printf("\nTuple # %ld is being deleted now desiredjtuple+ 1);
sleep(2);
/* # line 3169 "db.sc" /*P select *

llsqlnit((char *)O);
Ilwritedb("retrieve unique(c=(count('); /* counts the number of tuples in the temp table ~

Ilwnitedb(tempjtable);
Hwritedb(".");
Hwritedb(satt[O] .a-name);
llwritedb(")))");
lIsqRinit((char *)O);
if (llerrtest() 0) {

if (llnextget() = 0) 1
Ilretdom(l1,30,4,&c);

166

/ I"Ilnextget */
IlsqFlush((char *)13);

1* Ilerrtest *

1=0;
if (c==0) I

printf('NnPress ENTER to continue...");
a=getcharo;

* return;

1* # line 3171 "db.sc" *1 1* host code retrieves the user conditions data *
if (HcsrOpen((char *)O, "cursor-output", "dbl' "Otemp table) !=0) 1

Ilwritedb("retrieve (");
for (select=0;select<n- I;selecte-i)

Ilwritedb(satt(select] .aname);
Ilwritedb("=");
Ilwritedb(tempjtable);
llwritedb(". ");
Iwitedb(satt~select] .a-name);
Ilwritedb(",");

lIwritedb(satt[select] .a~name);
Ilwritedb('=");
lIwritedb(tempjtable);
Ilwritedb('. ");
Ilwritedb(satt[select] .a~name);
11writedbCY');
1UcsrQuery((char *)0);

) Ii" lIcsrOpen *
printf(');
look-more=-0;
1=-0;
if (C==0) I

look-more=1;
I

I"' Fetch the cursor to the temp-ablerelation which is the intermediate table
hold the temp-tablefrom the query, then print out the tuple one at a time until no more

record to print to the user */
while (look more == 0) 1
if (llcsrFetch((char *),"curor output",PdblV) -0)1

if (desiredjtuple = 1) 1
printfW'record id %ld \t",I+ 1);

for (i=0O;i<n;i++){
if (strcmp(satt[i] .data-type,"c20")-==0) I

IlcsrRet(1,32,O,char value);

167

if (desired -tuple ==1)
printfQ'%s: %s",satt~i].a narne,char value);

if (strcmp(satt[i] .data -type, "integer")==-O)
IlcsrRet(1,30,4,&integer value);
if (desired_tuple == 1)

printfC'%s : %ld ",satt[i].a name,integer value);

if (strcmp(satt~i].data type,"float")==O)
IIcsrRet(1,31 ,4,&real value);
if (desired -tuple == 1)

printf("%s : %8.2f ",satt[i].anamereal-value);

if (strcmp(satt~i].data-type,'image")==O)I
IlcsrRet(l1,30,4,&media-value);
if (desired_tuple == 1)4

im-value=media value;
printf("%s id is %d ",satt[i].a_name,media-value);

if (strcmp(satt[i].datajype,"sound")==-O)
lIcsrRet(1,30,4,&media 1 -value);
if (desired-tuple = 1)4

so-value=media I value;
printfC'%s %/d",satt[i] .a name,media 1 -value);

}/*" end for select < n*/

IlcsrEFetch((char *)Q); /* fetch the next record to the cursor ~
1++,- /* increment 1 as the counter */
if (1==c) I I"' check if no more data to print *
look-more = 1; 1* exit of the loop *

f* IlcsrFetch *
I"' end while */

IcsrClose((char *)O,"cursor -output","db1I"); 1* close the cursor *
printfC'Press ENTER to continue ..");

a= getcharo;
/* this for the check for the media selection *
if (c==O)

i=9999; 1* if no record for the media data not process any thing *
for (i=-O;i<n;i++) I
if (strcmp(satt~i] .data-type,"image')=-O)

if (image-flag==TRUE)i
strcpy(tablesarray~tablejindex] .table-name, satt[iI .tname);

168

found = check-table-nameo; 1* search for the media name
table-cursor = table-entry;
strcpy(media-name,satt[i].a name);
get-media-nameO;
printf('NnThe media data from the media table* %s is being deleted now....., media-n-

ame);
sleep(4),
mod...get-rid_image(i, imvalue);

if (strcmp(satt[i] .data-type,"sound")==-O)
if (sound~flag==TRUE) I

strcpy(table-array~table - ndex]. tablename, satt~iI .tname);
found = check-table_name();

table-cursor = table-entry;
strcpy(media name,satt~i] .aname);
get-.media-nameo;
printf("\nThe media data from the media table %s*** is being deleted now....., media-n-

ame),
sleep(4);
mod..get-rid_sound(i, so value);

1/* end for select < n*/
printf('\n");

When mode is MODIFY, this function gets sound file attributes from the related media table.

getsndjileatts (media -name, i, value)
STR-name media-name,
mnt i;
mnt value;
I
int entry;
char sound-value[20];

mnt att-cursor;
int desired jupleno,
char query-phrase[DES CR LEN+ f],

in_phrase[DESCRLEN+ 1];
int j=-O, k, c, pid, query-err, query-len, in-len, f-flag,look-more=O:,

char ISfn5 [FILENAMELEN+ 11;
char ISdescr I [DESCRLEN+ 1];

169

int ISerror;
STR-path file-name;
STR-descrp nothing;
char temp~file[OOI; /* Declare more to avoid bus error ~
int show-pid, wait-pid;
union wait status;
int sid = 0;
int pp=-O;
int qq-=0;
int res=-O;
int sz=-O;
int sjate=-0;
int enc;
int dur=0O;

inttostr(valL 3, soundvalue);

lIsqInit ((char *)0);
Ilwritedb("retrieve unique(pp=(count(");
Ilwritedb(tempjtable);
Ilwritedb". ");
IIlrtedb(satt[i] .a-name);
llwritedb(")))');
IlsqRinit((char *)0);
if (llerrtesto==O) I

if (llnextgeto !=O0)t
Hlretdom(1,3O,4,&pp);

I
IlsqFlush((char *)0);

if (IlcsrOpen((char *)O,"cursor output8",'db3",O,media-name) !=0){

Ilwntedb('retrieve(ISfn5=");
Ilwrntedb(inedia-name);
lIwtedb(".");
lwnitedb('fidISdescr 1I")
lIlwntedb(media-name);
Ilwrmitedb(' t.descrp,")

Ilwnrtedb('res=");
Ilwnitedb(media-name),
llwritedb(".);
Ilwritedb("resol uti on,")

170

lIwrtedb('sz=");
Ilw-ritedb(media_name);
lHwritedbQ'.");
Ilwnrtedb("size,");

Ilwritedb(" "S rate=");
Ilwritedb(media-name);
Ilwritedb(".");
Ilwritedb("samp~rate,");

Ilwritedb("enc=");
Ilwritedb(media-name);
llwritedb(".");
lIwritedb("encoding,)

Ilwritedb("sid=');
lwritedb(media -name);
Ilwritedb(".");
Iwritedb("s-id,");

lIwrtedb("dur=");
Iwritedb(media-name);
Hwritedb('.");
Ilwntedb("duration");

Ilwritedb(")");
Ilwritedb(" where)

Ilwntedb(media_name);
Hwnitedb(".sjid=");
lIwntedb(sound_value);
IlcsrQuery ((char *)O);

pp 1
I

while (look-more==-O) I
if (HcsrFetch((char *)O, "cursor-output8","db3") !0)4

IlcsrRet(l1,32,0,ISfn5);
IlcsrRet(1,32,O,ISdescr 1);
IlcsrRet(1,30,4,&res);
lIcsrRet(l1,30,4,&sz);
IlcsrRet(lI,30,4,&s rate);
lIcsrRet(l1,30.4,&enc);

171

HcsrRet(1,30,4,&sid);
IlcsrRet(1,30,4,&dur);

strcpy(file-name, lSfn5);
strcpy(sndjrecord[snd -ndexl .fjd, file_name);
strcpy(descrp, ISdescr 1);
strcpy(snd -record[sndjlndex] .descrp, descrp);
snd record[snd -index] .resolution = res;
snd-record~sndjindex] .size = sz;
sndjecord[snd -ndex.samp-rate = s-rate;
snd-record[snc-index] .encoding = enc;
snd-record[snd-indexl.s -id = sid;
snd-record[sndjindex] .duration = dur;

snd-value[sndjndex=snd-record[snd-jndex] .s id;/* ---
attarray[attscursorl .value-entry=snd-index;

printf("\n");
IlcsrEFetch((char *)0);

if (qq==pp)
look-more =1;

IlcsrClose((char *)O,"cirsor-output8","db3");

init-buffer(sound_value, 20);

When mode is MODIFY, this function gets the image file atts from the related media table.

get~filejd(media-name, i, value)
STR-name media-name;
int i;
int value;
I
int entry;

int att-cursor;
int desired-tupleno;
mnt k=0O, j=0O, look-more=O;
char ISfn 1[FILENAMELEN+ 11;
char ISdescrlI [DESCRLEN+ 1]

char image-value[20];

172

int tight =0;
int wdth =0;
int dpth =0;
int lid = 0;

STRpath f-name;
STR-descrp nothing;
char tempffile[100]; /* Declare more to avoid bus error *
struct pixrect *pr;

* colormap-t cm;
int show-pid, wait pid;
unon wait status;
int over-length = TRUE; /* Initialize to true *
cm.type = RMTNONE; /* this is absolutely necessary! Otherwise *
cm.length = 0; /* prjoadsolormap might not allocate storage *
cm.map[0] = NULL; /* for the colormap, if the garbage found in *
cm.map[l] = NULL; /* the cm structure seems to make sense. The *
cm.map[21 = NULL; /* result, of course, is segmentation fault. ~

inttostr(value, image-vyalue);

llsqlnit ((char *)0);
Ilwritedb("retrieve unique(k=(count(");
Ilwritedb(media -name);
Ilwritedb(".");
lIwritedb("iid");
Iwritedb(")))');

IlsqRinit((char *)O);
if (Herrtesto=-O) I
if (llnextgeto !=-0)1

Ilretdom(1,30,4,&k);
I

* IlsqFlush((char *)0);

if (HcsrOpen((char *)O,"cusor output1","'db"0 ~media name) !=0){

llwnitedbC'retrieve(ISfn 1I)
Ilwntedb(media -name);
Ilwrmtedb(".");
lIwntedb("fjd,ISdescr I=");
Ilwntedb(media-name);

173

Ilwritedb(" .descrp,");

IIwntedb("hght=");
llwritedb(media-name);
Ilwritedb(".");
Ilwntedb("height, ");

Ilwntedb("iid=");
Ilwritedb(media -name);
Ilwritedb(".");
lHwritedb("iid,");

Ilwritedb("wdth=");
Ilwritedb(media -name);
I1writedb(".");
Ilwritedb("width,");

Ilwnitedb("dpth=");
lIwritedb(media -name);
IHwritedb(".");
llwnitedb("depth"),

II'wntedb(")");
Ilwntedb(" where")
Ilwritedb(media -name);
Ilwritedb". ");
Ilwritedb("i-id");
lIIrtedb("=");
Ilwfitedb(image -value);
IlcsrQuery ((char *)O);

k I ; * -------- ---------
I

while (look-more==O) I
if (IlcsrFetch((char *)O, "cursor-Output 1 ","db") !=0){

llcsrRet(1,32,0,iSfn 1);
lIcsrRet(l1,32,0,ISdescr 1);

IlcsrRet(1,30,4,&hght);
llcsrRet(I,AZ,4,&iid);
IlcsrRet(1,30,4,&wdth);
IlcsrRet(1,30,4,&dpth);

strcpy(fname, ISfn 1);

174

strcpy(imgryecord(imgjindex] .fid, f name);
strcpy(descrp, ISdescr 1);
strcpy(img-ecord[imgmindexl .descrp, descrp);
img-record[img-index] .height = hight;
img-record[img-index] .ijid = lid;
img-record[img-index] .width = wdth,
imgrjecord[imgjlndex] .depth = dpth;
/*---------------------------*/
img-value[img-index]=imgjecord[img index]l .id;
att~array [atts ursor] .valuesentry=imgandex;
/*---------------------------
printf('Nn");
IlcsrEFetch((char *)Q);

if (j==k)I
look-more = 1;

lIcsrClose((char *)0,"cursor outputl1","db");

/* printf("\nimgjyecord[imgjndex]. .i'd =>%d" ,img record[ung index] .i id);
printf('\nimgjecord[img-jridex] .fid =>%s",img record[img index] .fjd);
printfQ'%-imgjyecord[img-index] .descrp =>%s",img record~imgjindexl .descrp);
sleep(l1);*/
init-huffer(imagevalue, 20);

When mode is modify, this function helps user modify the tuples in the result table one by one.

processjtuple-by-uple(r)
int r;

int entry;
int desired_tuple;
char c-temp[601;
mnt count=0;
mnt J=0O,k=-O,l=0,temp;
char char-value[21],aa,
char file-name[20];
int imgvalue, snd value;-
int integervalue,media-value,found, media I -value;
float real-Value;
mnt i=Oselect=J;
int g=O;
int d;

175

1_value[i-index]=-O;
desired -tuple=r;
printf(AnTuple to be modified :: Tuple #%d ",desired-tuple+ 1);
sleep(3);

/* # line 3169 "db.sc" *11* select *

Ilsqlnt((char *)0);
llwritedb("retrieve(g=(count("),
Ilwnitedb(tempjtable);
Ilwritedb(".");
Ilwnitedb(satt[O] .aname);
Ilwritedb(")))");
IlsqRinit((char *)0);
if (llerrtest() ==)
if (Ilnextgeto != 0) 1

I1retdomn(1 ,30,4,&g),
/* Ilnextget */

IlsqFlush((char *)0),
1/* Herrtest *

1=0;
if (g==0)
printf(\NnPress ENTER to continue..."');
a=getcharo;
return;
I
1* # line 3171 "db.sc" *11* host code *

if (flcsrOpen((char *)0,"cinrsor-output",'db2",0,temp-table) !=0){
llwritedb("retrieve(");
for (select=0O;select<n- 1 ;select++)
Ilwritedb(sattfselectJ.a _name);
lIwritedbC'=");
Iwritedb(tempjtable);
Ilwritedb(".");
Ilwritedb(satt[select].a _name);
Ilwritedb(",");

Ilwritedb(satt[select].a~namne);
lIwritedb("It");

Iwritedb(temp_jable);
Ilwritedb('.");
lIwritedb(satt[select] .a-name);
Ilwritedb(')");
IcsrQuery((char *)Q);
/*P IlcsrOpen *

printf('Wn);

176

look -more=-0;

if (g==0)
look-more=l1;

table-cursor = table-entry;
count=0O;
count = table_array[tablejlist[tablescursorll .att -count;

* att-cursor = table-array[tablejist[table-cursor]] .att-entry;
act-media-count = 0;

* i-index=0O;
c-index=0O;
/* Fetch the cursor to the result relation which is the intermediate table

hold the result from the query, then print out the tuple one at a time
until no more record to print to the user ~

while (look-more == 0) 1
if (llcsrFetch((char *)O,"cijrsor output"2"db2") !=0)

if (desiredjtuple == 1) 1
printf("record id %d Nf",l+ 1);

I
for (i=O;i<n;i++)
if (strcmp(satt[i].data-type,"c20")==0O)

llcsrRet(l1 32 ,0,char value);
if (desired_tuple ==1) 1

printf("%s : %s",satt[i].a name,char value);
strcpy(c-temp, char-Value);
strcpy(c -value[c-jndex], cjemp);
att-array~attscursorl .value -entry = c_index;
c-index = (c_index + 1) % 20;
att-cursor = att-array[att-cursor].next-index;

if (strcmp(sattfiI.data -ype, "integer")==0O)
IlcsrRet(1,30,4,&integer value);
if (desired_tuple =--)(

printfQ'%s : %ld ",satt[i].a name,integer value);
* i-value[i-index]=integer__value;

att - iaylatt-cursor].valuesentry = i-index;
iUndex =(i-index+ 1) %20;
aftcursor = att-array[att cursor].next-index;

if (strcmp(satt[iI .data-ype,floatI)--=)
IlcsrRet(1,31 ,4,&real value);
if (desired_tuple == 1) 1

177

printf("%s : %8 .2f ",satt[i] .aname,real-value);

if (strcmp(satt[i] .data-type,"image")==O) I
IcsrRet(l1,30,4,&media value);
if (desired - uple == 1

img..yalue=media-value;
printf("%s id is %d ",satt[i].a _name,media-value);

if (strcmp(satt~i] .data-type,"sound")==-O)
IlcsrRet(1,30,4,&media I value);
if (desiredjtuple = 1) 1
snd-value=medialI value;
printfQ'%s %d' ,satt[i] .a_name,media 1_-value);

I/*end for select n~*/
printf('\.n");
IlcsrEFetch((char *)O); /* fetch the next record to the cursor *
1++; 1* increment 1 as the counter *
if (I==g) { /* check if no more data to print *

look-more = 1; 1* exit of the loop *

/ * lIcsrFetch *
1 * end while */

IlcsrClose((char *)O,'cursor output","db2"); f* close the cursor *

printfC'Press ENTER to continue ..");
a= getcharo;

for (i=O;i<n;i++)
if (strcmp(satt~i] .datajtype,image")==O) I

strcpy(table-array[table -index] .table -name, satt[i] .tname);
found = check-table-nameo; 1* search for the media name *
table-cursor = table-entry;
strcpy(media-name,satt(iI.a name);
get-media-nameo;
printfQ'MThe attribute values will be read from the media table %s", media-name);
sleep(2);
get -file-id(media name, i, img-value);
printf("Press ENTER to continue ..");

a= getcharo;
att-cursor = att-arrayfatt..cursor.nextjindex;
media-counter++;

178

media-value=-O;/* --------

if (strcmp(satt[iI .data-type,sound")==-O) I
strcpy(table-array[table index] .table_name, satt[1] .tname);
found = -heck-table-nameo;
table-cursor = table-entry;
strcpy(media-name,satt~iI .aname);
get-media -nameo;
printfC*\nThe attribute values will be read from the media table %s", media-name);
sleep(2);
get-snd_file atts(media name, i, snd-value);
printf("Press ENTER to continue ..");

a= getcharo;
att-cursor = att-array[att-cursorl .next-ndex;
media-counter++-I;
medialI_value=O;/* ---------- *

/* end for select < n*I

When mode is MODIFY, this function prints the number of tuples in the result table.

int print-for-modify(c)
int c;

/* # line 3169 "db.sc" *11* select ~

lIsqlnit((char *)O);
llwritedb("retrieve(c=(count(");
Ilwritedb(tempjtable);
Ilwritedb('.");
Ilwritedb(satt[OJ .a-name);
Ilwritedb(")))");
IlsqRlit((char *)O);
if (llerrtest() == 0) 1
if (Hnextgeto != 0) 1

Hlretdom(1I,30,4,&c);
}* Is1Inextget */

IlsqFlush((char *)0);
I * Ilerrtest *

printf('\n*** THERE ARE %/d RECORDS (TUPLES) TO BE MODIFIED ***",c);
printfC"\n(You will be queried for modifying each tuple)");
sleep(3);

179

return(c);

When mode is modify, this function deletes the modified tuples from the tables.

void delete-formatted-part-for-modify()
I
int I;
printf(AnThe tuples that match the delete query are being deleted from table* %s** now",-

satt[O] .tname);
printf('\nPress ENTER to continue");
a=getcharo;
IIsqInit((char *)Q);
lIwitedb("delete ");
lIwritedb(satt[O] .t-name);
H1writedb(" where ");
for (i=-O; i<n- 1; i++)I

Ilwritedb(satt[O] .tname);
Ilwritedb(".");
Ilwritedb(satt~iJ.a name);
Ilwritedb("=");
Ilwritedb(temp-table);
Ilwritedb(". ");
Ilwritedb(satt[i] .a-name);
Ilwritedb(" and")

Ilwritedb(satt[OI.t name);
Ilwritedb(".");
Iwritedb(satt[i] .aname);
Ilwritedb("=");
Ilwritedb(tempjtable);
Ilwritedb(".");
Ilwritedb(satt[il .a-name);

llwritedb(" ");
IlsqSync(l1,(char *)O);

This function, when mode is DELETE, deletes the from the related media tables.

get-idmage(imageno)
int imageno;

Ilsqlnit((char *)O);

180

Ilwritedb("delete ");

Ilwntedb(media name);
IlwritedbC' where ");

Ilwritedb(media name);
Ilwritedb(".Y);
lwritedb("iid =)

lIwritedb(temp-table);
II'writedb(".");
Ilwritedb(satt[imageno] .a-name);
Hlwritedb(")

IlsqSync(l,(char *)O);

This function, when mode is MODIFY, deletes the modified tuples from the related media tables.

mod-get rid-image(imageno, value)
int imageno;
int value;

char media-value[20];
inttostr(value, media-value);,

Ilsqlnit((char *)O);
Hlwritedb("delete ");

Ilwritedb(media name);
Ilwritedb(" where ");

Ilwritedb(media name);
Ilwritedb(".");
Ilwritedb(iid");
Ilwritedb("=');
Ilwnitedb(media value);
Ilwritedb(" ");
IlsqS ync(l 1 (char *)Q);

This function, when mode is DELETE, deletes the tuples from the related media tables.

get-idsound(soundno)
nt soundno;

Ilsqlnit((char *)O);
Ilwritedb("delete")

181

Ilwritedb(media name);
Ilwntedb(" where "),

Ilw-ritedb(media -name),
Ilwritedb('.");
IlwntedbC's-id *)

Ilwritedb(tempjtable);
Iwritedb(".");
lIwritedb(satt[soundno] .aname);
11writedb(" ");

llsqSync(l1,(char *)O);

This function, when mode is MODIFY, deletes the modified tuples from the related media tables.

mod...get -rid -sound(soundno, value)
nt soundno;,

int value;

char sound_value[20];
inttostr(value, sound_value);

Ilsqlnit((char *)O);
lIwritedb("delete ");

lIwritedb(media -name);
Ilwritedb(" where ");
Ilwritedb(media -name),
Hwritedb(". "),
11writedb("sjid");
lIwritedb("=");
Ilwritedb(sound value);
Ilwritedb(' ");

IlsqSync(I,(char *)O);

When mode is DELETE, this functions is the main function calling other functions to delete the
tuples from the related media tables.

void ql-print-delete-data()

int j=O,k=O,l=-O,temp;
char char-value(21],La;
char file-name[201;
int intege-value,media-value,found,medla I _value;

182

float real-value;
int i=0O,select=0O;

int c=O;
/* # line 3169 "db.sc' * /*~ select *

lIsqlnit((char *)O);
Ilwnitedb("retrieve unique(c=(count(");

Ilwritedb(tempjtable);
Ilwritedb(".D;
Ilwnitedb(satt[O] .a-name);
lIwritedb(")))");
lIsqRinit((char *)O);
if (Uerrtest() -- 0) 1

if (Hnextget() ! = 0) 1
Ilretdom(1,30,4,&c);

1 * lnextget */
llsqFlush((char *)Q);

1/* Ilerrtest ~

1=-0;
printf('NnThere are %0 records that match the DELETE query" ,c);
if (c==0O)I

pfintf('\nPress ENTER to continue...");
a=getcharo;
return;

1* # line 3 ill "db.sc' */ /* host code *
if (HcsrOpen((char *)0, "cursor-output", "db 1 ",O,temp-table) !=0)

for (select=0O;select<n- 1;select++)
llwritedb(satt[selectl .aname);
Ilwritedb('=');
Ilwnltedb(tem pjable);
Ilwritedb('.");
Ilwritedb(satt[select] .anae);
Ilwnrtedb(",");

Ilwritedb(satt[select].a_name);
lwiitedb("=");
Ilwritedb(tempjtable);
Ilwritedb(".");
Ilwritedb(satt~selectl .aname);
Ilwitedb(")");
IlcsTQuery((char *)0);

I /* IlcsrOpen *
printf('Vi");

1 83

look more=0;
1=-0;
if (c==0O) I

look-more=1;
I

1* Fetch the cursor to the temp-tablerelation which is the intermediate table
hold the temp-ablefrom the query, then print out the tuple one at a time until no more

record to print to the user *
while (look more == 0){

if (flcsrFetch((char *)0, "cursor Output","dblV) =0) 1
printf('record id %d \t",l+1);

for (i=0O;i<n;-i+) t
if (strcmp(satt[i] .datatype,"c20")==0O)I

IlcsrRet(l1,32,0,char_value);
printf("%s : %s",satt[i].aname,charyvalue);
I

if (strcmp(satt[i] .data-type,"integer")==0O) I
llcsrRet(1,30,4,&integer _value);
printf("%s: %d ",satt[i] .aname,integer-value);
I

if (strcmp(satt[i] .data -type," float")==0) I
IlcsrRet(1,31 ,4,&reaI_value);
printf('%s : %8.2f ",satt[iI.a namereal value);

I
if (strcmp(satt[i] .data rye"nag"=0

IlcsrRet(l1,30,4,&media_value);
printfQ'%s id is %d ",satt[i].a_name,media value);
I

if (strcmp(sattti] .data type,"sound")==0)
IlcsrRet(l1,30,4,&media I value);
printfQ'%s %d",satt[i] .a name,media lvalue);

I
S/*" end for select < n*I

printf('n");
IlcsrEFetch((char *)0); 1* fetch the next record to the cursor *
1++i; /* increment l as the counter */
if (1==c) { /*" check if no more data to print *

look-more = 1; 1* exit of the loop *

1 1 IcsrFetch *
I/* end while */
lIcsrClose((char *)0,"cursor -output", "db I"); 1* close the cursor *

printffCPress ENTER to continue ..");
1* stop before change to the next function so

the user can see the tempjtableon screen, until he hit ENTER key *
a_- getcharo;

184

1* this for the check for the media selection *
if (c==-O)

i=9999; /* if no record for the media data not process any thing *
for (i=O;i<n;i++)I

if (strcmp(satt[i] .data -ype,"image")==O)
if (image flag==TRUTE) I
strcpy(table-array[tablejindex] .tablename, sattl] .Lname);
found = check-table-nameO; 1* search for the media name ~

*table-cursor = table -entry;
strcpy(media-name,satt[i] .a _name);

*get-media -namneo;
printfQ"\nedia-name--> ***%s***", media-name);
sleep(2);
get-rid-image(i);

if (strcmt,(satt[iI 4ata-ype,"sound")==-O) I
if (sound~flag==TRUE)j
strcpy(table -array[tablejindex] .tablename, satt[i] .t-name);

found = check-table-nameO;
table-cursor = table -entry;
strcpy(media-name,satt~iI .aname);
get-media-nameo;
printf('\media-rname-> ***%s***", media-name);
sleep(2);
getjid-sound(i);

I P~ end for select < n*/
printf("\nrI);

When mode is MODIFY, this function checks the media dc3cription if the media data is modifed.

mnt mod-chk-description(filejid, descrp, err-message)
STR-path *file-id;
STR-descrp *descirp;
char *errmessage;

mnt iz0;

mnt error = FALSE;
while (i<1I && ! error) I

*ermessage = VY;
if (strcmp(descrp, " ") != 0)
error = connectparser(file~id, descrp, errmessage);

185

if (error)
I
printf('"The description for media is NOT acceptable!");

if (error == DESCRWORD_ERR)
printf("AnThe system cannot understand the word >>%s<<", err_message);

else
if (error == DESCRSTRUCTUREERR)

printf('AnThe system cannot interpret the phase\n >>%s<<",
errmessage);

else
printf('nThe program error occurred in prolog.\n");

printf(\nPlease modify it. Thank you!");
putchar(NOO7');
while((c=getcharo) != n')

return(TRUE);
I

else
return(FALSE);

I

Gets all atts of a given table and puts them in satt array for retrieving all the attributes of that
table.Used in delete and modify procedures.

void get all-arts of-a-giventableo

I
int i = 0,

count = 0;
count = table array[tablejist[tablescursor]].att_count;
n = count;
attcursor = tablearray[table list[tablescursor]].att entry;
for (i = 0; i < count; i++) /* Loop to get value for each attribute */
I
strcpy(satt[i].t_name, stab[O].tname);
strcpy(satt[i].a_name, att array[att cursor].att name);
strcpy(satt[i].datatype, attarrayattcursor].datatype);

attcursor = att_array[attscursor].nextjindex;
/* End of for loop */

/* End of getjtuple value */

1

/

186

P* The main procedure for the retrieve operation *
Pm and n is the parameter for table and attribute repectively *

/* For retrieve table name and attribute name from the user *
/*This function also handles DELETE and some of the MODIFY operations *

void retrieve(mode)

int entry;
* mnt count;

mnt h,r~flag=TRUJE;
*nt o, u;

char buf0[13];
char huf1[13];
char buf2[13];
char buf3[13];
char buf4[13];
char temp[3];
char aggregateO[3];
char aggregate 1 [3];
char aggregate2[3];
char aggregate3[3];
char aggregate4[3];
int ij,x,yz,found=-O;
int level-no=0, counter=1;
char table_name[20] ,attname[20] ,att-type[20,Ans,More,a;
char choice;
init-buffer(buff, 100);
init-buffer(tempjtable 1,20);
init-buffer(tempjable2,20);
init-buffer(tempjable,20);
choice='0';

gcond=0O;
* numcon=0O;

aggregatejfound=FALSE;
* more-selections=TRUE;

more-levels=TRUE;

inito;
drop-temp-media-tableso;

while (more-levels != FALSE){I
while (more-selections !=FALSE) I

init-buffer(buff, 100);

187

printf('NnEnter table name to hold the temporary result of the query: ");
gets(buff);
strcpy(temp-table, buff);
intbuffer(buff, 100);

help_tables(buff);
while (i<=table-count) {/* check loop with the maximum number table */

for (j=O;j<13;j++)/* each table has less than or equal to 12 char only */
f
if (buff[k]==44) I

stab[i] .t-namej]= N;
j=55;
k=k+ 1;
i=i+1;

I
else t

if (buff[k] =='")

j=55; /* Skip the white space if the user typped in*/
else

stab[i] .tname[j]=buff[k];
if (buff[k]==O) I /* if null value in buffer (end of string) */

m=i+l;
j=55;
i=1000;

I

k=k+ 1;
I

1/*end while*/

strcpy(temp-tablel, stab[0].tname);

for (i=0;i<m;i++)
strcpy(table array[tablejndex].table-name, stab[iltname);
found = checktablenameo; /* search for the media name *[
if (!(found)) I
* check for the valid table name if not found then return to calling program */
putchar(No07');
printf('\nTable %s not found please redo again !!!" ,stab[i].tname);
printf('\NPress ENTER to continue !!");
a=getcharO;
return;
/* end else */

I /* end for loop */

188

1* Specify the join condition if there are more than 2 table select ~
help-joino;

/* Select attribute *
init-buffer(buff, 100);

10;
j =0;
k =0;
x=0;
z =0;
if (mode == RTRVE_-MODE)(

/* Select attribute for one table at a time *
for (y=0;y<m;yi+)I

printf('%nTable %s ", stab[y].t_name);
strcpy(buff,"?");
while (strcmp(buff,'?")==0) (

printf('NnSelect the attribute(s) separated by comma <,> - <?> for HELP! Anhit <ESC> for no
attribute");

printf("\nSELECT ATTRIBUTE(S):
gets(buff);
if (strcmp(buff,"?")==-0){
patt(stab[y] .tname);
f* end if buff--= "T' *

}/* end while need help *

while (1 < 100) 1
for (j=0;j<13;j++)f
if (bufftk]==27)

goto start-again;

if (bufflk]==44)
bufObII= V'O;
strcpy(satt[x] .t name, stab[yI .t_name);
init-buffer(temp,3);
init -buffer(aggregate0,3);

* u=x;
aggregate-found=FALSE;

* aggregate found=check-aggregate(bufO, temp, aggregate-found);
printf('Wn);
strcpy(aggregateO, temp);
if (aggregatejfound==TRUE)i
get -attribute(buf0, satt~u] .a_name);
printf('Nn");
if (strcmp(aggregate0,"cnt")==O)

sattlul .aggregate-type= 1;
if (strcmp(aggregate0," sum ")==O)

189

satt[uI .aggregatejypt 2
if (strcmp(aggregateO,'avg')==-O)

satt[u] .aggregate-type=3;
if (strcmp(aggregateO, "max ")=--O)

satt[u] .aggregate-type-4;
if (strcmp(aggregateO, "min ")=--O)
sattlul .aggregate-type=5;

printf'n");

if (aggregate-found==FALSE) I
strcpy(satt[u] .aname,bufO);
sattlul .aggregate-type=-O;
printf('\n");
clr-scro;

J=55;
k=k+ 1;
I=i+ 1;
x=x+ 1;

I
else{

if (buffik]==)
j=55; 1* Skip the white space if user typped in *

else j
bufOU]=bufflk];
I
if (buff[k]==-O) {

strcpy(satt[x] .t name, stab[y] .tname);
imit -buffer(temp,3);
iit-buffer(aggregateO,3);
u=x;
aggregatejfound=FALSE;
aggregatej- ound=check aggregate(bufO, temp, aggregate-found);
printf('\n");
strcpy(aggregateO, temp);
if (aggregatejfound=-TRUE) I

get-attribute(bufO, sattlul .aname);
printf('\n");
if (strcmp(aggregateO,"cnt")==O)

satt~u] aggregate typ=1
if (strcmp(aggregateO, "sum ")==O)

satt[u] .aggregate te2
if (strcmp(aggregateO,"avg")--=O)

sattlul .aggregate-type=3;
if (strcmp(aggregateO, "max ")==O)
sattlul .aggregate-type-4;

190

if (strcmp(aggregate0,"min")==O)
satt(u] .aggregate-type=5;

printf("\n");
I
if (aggregatejfound==FALSE) I

strcpy(satt[u] .a-name bufO);
satt[uI .aggregate-type=0O;
printfQ"\n");
clr-scro;

n=x+ 1;
j=55;
i= 1000;
I

k=k+ 1;
I /* end else *

I/* end forj < 13*
1/*end while *
x=x+1;

start-again:
k=-0;
iit-buffer(buff, 100);
i=O0;
} * End select attribute for each table go to the next table *

dlr-Scro;
for (i=O;i<n;i++) I

printfQ'Nn%s.%s", satt[i] .t-name,satt[i].aname);
getatttype(satt[i) .t name,satt[i] .a name,satt[i] .data_type);
I

/ * closure of if mod ==-ret *
if ((mode==DEL_-MODE) 11 (mode==MODMODE))(

table-cursor = table-.entry;
get all atts of a ivenjableo;

* printfQ'\n");
cond=O;
printfQArtAny condition ? (yin) :)
Ans=yes-no -answero;
if ((Ans= 12l1 (Ans=--89)) I

choice=nested-processcondition(cboice,temp table 1,temp tble2,temp table);

if (choice=='0)j

191

ql-retrieve(tempjtable);
ql-printdata(temp-table);

imitbuffer(buff, 100);

query-forj- ntersect -union(choice~temp_table 1 ,temp-table2,temp table);
printfC'NnMore selections at this level ? (yin)");
Ans=yes-no-answerO;
if ((Ans==12l 1I(Ans==89)){

more-selections=TRUE;
choice='O';
y =0;
j =0;
x =0;
z =0;

=0;
k=O;

cond=0O;
gcond=0O;
numcon=0O;

found=O0;
inito;
drop-jemp-mediajableso;
init -buffer(buff, 100);
init -buffer(temp_tablel2)
init-buffer(tempjtable2,20);
init-buffer(tempjtable,20);

I
else(

more -selections=FALSE;
printf('\n");

printfQ'\nMore levels ? (yin)");
Ans=yes no-answero;
if ((Ans= 121)1(Ans=-89)) I
more-levels=TRUE;
more-selections=TRUE;
level -no=level-n-+I.
choice='0';
Y =0;
J =0;
x =0;
z =0;

192

M=O;
k=-0;

cond=0;
gcond=0;
numcon=0O;
n=-O;
inito;
dropjtemp-media-tableso;
imit buffer(buff, 100);
init_buffer(tempjtable 1,20);
init-buffer(tempjtable2,20);
init-buffer(tempjtable,20);
found=0;
I
else(

more-selections=FALSE;
more-levels=FALSE;

}/I end while more levels *

if (mode==DELMODE)i
image-flag=TRUE;
sound-flag=TRUE;
printfCAnDo want to continue with DELETION ? (yin) :)

Ans=yes_no-answero;
if ((Ans=1 l0)11(Ans==78))

goto qquit;
qlprint -delete-datao;
delete-formatted-part for modfyo;
drop-able(temp-able);
image-flag = FALSE;
sound_flag =FALSE;

I
if (mode==MOD-MODE)j

formatted -flag = FALSE;
image-.flag = FALSE;
sound_flag = FALSE;
h=print -for -modify(h);
for (r=O; r<h; r++) I
formatted -fag = FALSE;
image-flag = FALSE;
soundflag = FALSE;
media-counter = 0;
process-t' iple-byjuple(r);
mod-display-tuple(mode, media-Counter);

193

store-data(mode),
mod-qljinsertjuple(mode);
att-cursce = 0;I*to initialize the value arrays *
im g-jndex =0;

_-index = 0;
f-index = 0;
c-index = 0;
delete-for-modify(r);

delete-form attedpar-f or-modifyo;
dropjtable(temp-able);
image-flag = FALSE;
sound-flag =FALSE;

I
qquit:

printf('Nn")
/* End procedure *

194

APPENDIX B: SOURCE CODE FOR THE

MODIFICATION

The programming code for the modify operation is contained in this appendix.

/*************************** ModifyModule.c *
* Title : ModifyModule.c *

* Author Aygun/Stewart *

* Date : July 1991 *

* History Created based on the PEI insert module modifcations *

* : prior to the insertion into the MDBMS and the *
* : Retrieval operations developed by Pongsuwan and Aygun *

* Description This module implements the modification of tuples *
* : existing (already stored in the catalog management *
* :MDBMS. *

*Export Interface: *

* mod-print all tableo:Prints out the table catalog information on screen *
* mod inserttuple(:Inserts a tuple of a particular relation *

* display-tupleo :Displays the tuple before insertion *
* checkmediadescrpo:Checks media description by connecting to the parser *
* qlinsertjtuple:Translates SQL statement to insert a standart tuple *
* showimage(:Displays image on the screen by passing pixels and colormap from *
* the caller. It might be able to quit the image automatically before *
* displaying the next image. *

*** ****** ** ********* *************** *** *** *****************************

* Import Interface: *

* modchecktablenameo:Checks table name to see if it is duplicate *
* get_media-name :Gets media table name by appending table-key at *
* the end of attname. *

* from CreateModule.c *

* modget-sound valueo :Gets a sound value of a media attribute from the *

* user input *

* yes no answer() :Gets yes or no answer from the user *
* clr-scr0 :Clears the screen. *

* from Usernterface.c *

#include <stdio.h>
#include <string.h>
#include <pixrect/pixrect hs.h>
#include <sys/wait.h>
#include <suntoollsunview.h>

195

#include <suntool/canvas.h>

#include "defines.h'
#include "errors.h"
#include "struct.h"
#include "GlobalVariables.h"

char c;
struct SNDHDR s-hdr;
mt imagescounter=- 141;
mt sndctr = 142;
mt modify-mode;
mt formattedflag = FALSE;
mt image_flag = FALSE;
mt sound-flag = FALSE;
mt actmediacount;
mt actmedialist[10];

/* Print out the table catalog information on screen for the modification */
/* operations */

void mod-print-all-table()
{
int i = 0;
printf(%t**Table Name**\n");
for (i = 0; i < tablecount; i-H-)
I
printf('" %s\n",tablearray[table_list[i]].tablename);
if ((i % 15)==- 14)

I
printf(' I*RETURN TO CONTINUEfn");
while ((c = getcharo) !- \r')

printf('t**Table Name**\n");
I

} End of for loop

} /* End of print all-tableO "1

I*** ***

/* Get a INTEGER value of a standard attribute from the user input for the */
/* modification operations

void mod-get int_value0
I
char stuff[3]; /* To provide a dummy var for n' when user enter '? "1

196

i-value[i index] = 0;
scanf("%d', &i value[ijindex,);
if (i value[i index] == 0) /* ? or 0 entered ~

i_value[i index] = 0; 1* if 0 entered still 0 *
stuffilO] = V
gets(stuff); /* To let next gets() work when ? entered in scanf()*

else
getcharo; /* Add after scanf() to let next gets() work properly *

att-array~attsumror].value-entiy = i_index;
i-index = (i index + 1) % 20;
1/* End of mod..getjintvalue()*

f* Get a FLOAT value of a standard attribute from the user input *

void mod-get-float-valueo

char stuff[3]; 1* To provide a dummy var for Nn' when user enter'?'T
fLvalue[f index] = 0.0;
scanfQ'%f", &fvalue[findex]);
if (f value[f ndex] == 0.0) f* ? or 0 entered *

fLvalue[f index] = 0.0; /* if 0 entered still 0.0 *
stuffilO] = N'
gets(stuff); 1* To let next gets() work when ? entered in scanf()*

else
getcharo; /* Add after scanf() to let next gets() work properly *

att~array[att-cumor].value -entry = fLindex;
fLindex = (f index + 1) % 20;

1 I* End of modget float value()o

f* Get a STRING value of a standard attribute from the user input *

void mod-get-c20-valueo)

mnt over-length = TRUE; /* Initialize to true *
char cjemp[60]; /* Temp var for read in, 60 to avoid bus error ~
while (over-length)
I

c-templO] = V
gets(cjtemp);
if (strlen(cjtemp) >= 2 1)

197

printf('"nSorry!! Value OVER 20 characters!");
putchar(\o07');
printf('NnPlease Enter <<%s>> Value (? if unknow):: ",

data-type);
I

else
{
over-length = FALSE;
strcpy(c.value[cjindex], c-temp);
if (strcmp(c.value[cjindex], "?") == 0)
strcpy(cvalue[c-index], " "); /* Assign blank as null */

att_array[attucursor].value-entry = c_index;
c_index = (c_index + 1) % 20;

} /* End of if else */
} /* End of while (overjlength) */

1 /* End of mod_get c20_value0 */

* Get the description of a MEDIA attribute from the user input. Asks the */
/* user for a sentence or a phrase to describe the sound or image data type*/
/* If the input is too long or if there is an empty string an error message*/
* occurs. */

void mod_get-descrp0
I

char phrase[MAXPHRASE+20/; /* Maximum length of a phrase is 127 */
int phraselen = 0, /* Declared 20 char more to avoid the*/

descrplen =0; /* bus error! */
int stop-input = FALSE;
descrp[0] = V';
printf("nPlease enter your query description\n\

* Noun phrases separated by commas and ending with an exclamation mark\n\
* Sentences end with a period.\n\

(end entire description with an empty line):-\n");
while (!stop-input)
I
phrase[0] = V';
gets(phrase);
phraselen = strlen(phrase);
if (phrasejlen >= 1)
I
if (phrasejlen >= MAXPHRASE) /*Need end with \n & \0 in one phrase*/

I
printf('nThe phrase OVER %d characters!", (MAX-PHRASE - 1));
printf(''nInvalid input!! TRY AGAIN! \n");
putchar(No07');

198

else
{
phrase[phrase_len] = n';
phrase[phrasejlen + 1] = W0';
if (phrase_len > 1)
I
if ((descrp_len + phrasejlen + 1) >= (MAXDESCRP + 1))
I
stop input = TRUE;
printf("\nThe last phrase extended beyond the maximum %d ",

MAXDESCRP);
printf("\ncharacters in description. It has been canceled.n");
putchar(V07');
while ((c = getcharo) != n')

I
else
I
strcat(descrp, phrase);
descrp-len = descrpjlen + phrase_len + 1;
} /* End of if else */

}; /* End of if (phrase_len > 1) */
} /* End of if else (phraselen >= MAXPHRASE) */
/ f* End of if (phraselen >= 1) */

else /* Empty string input *1
I
if (descrplen == 0)
I
printf('AnSorry! Empty string is NOT allowed! .Vi");
putchar(\007');
I

else
stop input = TRUE;

} /* End of if else */
} /* End of while (!stopjnput) */

/* End of modget descrp0 */

/* Get a SOUND value of a media attribute from the user input to modify */
/* a sound value already stored in the database. Some error checking. */1***f

void mod-get soundvalue0
{

STRpath filename;
char tempfile[100]; /* Declare more to avoid bus error */
int size = 0,

199

sampjyate = 0,
encoding = 0,
resolution = 0;

float duration = 0.0;
int over-length = TRUE; /P Initialize to true ~
snd-record[snd index].s-id = att-array[att-cursor].media_id;
while (over-length)

printf('NnPlease Enter «<%s > File Name! !", data-type);
printf('NnNOTE: Enter The Full Path Name:: (?if unknow)\n");
temp jile[0] = '\0';
gets (temp-file);
if (strlen(temp~file) >= (MAXPATH +1))

printf('\nSorry!! PATHNAME OVER %d characters! TRx AGAIN!!\n",
MAX -PATH-);
putchar('007');

I
else
I

strcpy(file-name, temp-..file);
if (strcmp(filejiame, "T)=0)

over-length = FALSE;
strcpy(sndjrecord[sndjindex] .fid,")

strcpy(sndjrecord[snd -ndex] .descrp,"
snd -record[snd -index].size = size;
snc-record[sndjindex].samp-rate = sampjate,
snd -ecord[snd -index] .encoding = encoding;
snd -record[snd -index] .duration = duration;
snd record[snd index] .resolution = resolution;

else

if ((snd file = fopen(file name, 'r')) = NULL)

printf('n%s", file -name);
printf(C\n7 he File cannot be opened! Try Again! rn");
putchar(1407);

I
else

s-hdr.sfname[0] ='0W;
snd -oad(file name); /*Get registra from sound text file*/
if (strlen(s hdr.sfnanie) != 12) f* sfname must 12 chars as *

P* a test of sound file */

200

printf(' n%s", file name);
printf('NThe File does not contain a proper sound!");
printf(" Try Again! .n");
putchar(W)07');

I
else P" i.e. Valid input *1

I
overlength = FALSE;

strcpy(sndrecord[sndjndex].fLid, shdr.sfname);
printf('nPlay the sound before enter the description?");
printf(" (y/n)::");
if (yes no answer() =='y')

playsndo;
sndrecord[sndjindex].size = shdr.ssize;
sndrecord[sndjindex].samp-jate = shdr.s_samplrate;
snd record[sndjindex].encoding = s_hdr.sencoding;
sndrecord[snd-index].duration = shdr.sduration;
snd_record[sndindex].resolution = s_hdr.sresolution;

} /* End of if else */
} /* End of if else */

fclose(sndfile);
} / End of if else */

} * End of if else */
1 /* End of while (overjlength) *1

I /* End of mod_getsound-valueo *1

/* Get a IMAGE value of a media attribute from the user input for modifying*/
P* an existing image value. Some error checking is done on the input.

void mod-get-image-value0
I

STR path file-name;
STR-descrp nothing;
char temp-file[100]; /* Declare more to avoid bus error */
int height = 0,

width = 0,
depth = 0;

struct pixrect *pr;
colormap-t cm;
int showpid, wait pid;
union wait status;
int over-length = TRUE; /* Initialize to true */
cm.type = RMTNONE; /* this is absolutely necessary! Otherwise */
cm.length = 0; /* prjload-colormap might not allocate storage *1
cm.map[0] = NULL; /* for the colormap, if the garbage found in */

201

cm.map[1I] = NULL; /* the cm structure seems to make sense. The */
cm.map[2] = NULL; /* result, of course, is segmentation fault. */
imgrecord[img index].i_id = att array[att cursor].mediaid;
while (over-length)
{
printf(\nPlease Enter <<%s>> File Name!!", data-type);
printf('NnNOTE: Enter The Full Path Name:: (? if unknow)\n");
temp-file[0] = W;
gets(temp-file);
if (strlen(temp-file) >= (MAXPATH +1))
I

printf("\nSorry!! PATHNAME OVER %d characters! TRY AGAIN! !\n",
MAXPATH);
putchar(\007');

I
else
I

strcpy(file-name, temp-file);
if (strcmp(filename, "?") == 0)
I
over-length = FALSE;
strcpy(imgjrecord[img-index].fLid,"
strcpy(imgjrecord[imgjindex] .descrp,"
imgjrecord[imgjindex].height = height;
img-record[imgjindex].width - width;
imgjecord[img_index].depth = depth;

I
else
I
if ((img_file=fopen(file-name, "r")) == NULL)
I
printf("%n%s", file name);
prinff(" nThe File cannot be opened! Try Again! .\n");
putchar(W7');

I
else !

pr = prJoad(imgjile, &cm); /* Get registration data *1
ISimage-from-pixrect(pr, &cm, file-name, nothing);

if (pr == NULL)

printf("\n%s", file-name);
printf('NnThe File does not contain a proper image!");
printf("\nThe image must be in Sun Raster format!");
printf(" Try Again! .\n");
putchar(W07');

202

else I
overlength = FALSE;
strcpy(img-record[imgmndex].f_id, filename);
printf('AnDisplay the image before enter the description?");
printf(" (yin):: ");

if (yes no answer() =='y')
showjimage(pr, &cm);

img_record[img_index].height = pr->prsize.y;
img_record[imgindex].width = pr->prsize.x;
imgrecord[img_index].depth = pr->pr-depth;

} *End of if else */
} /* End of if else **

fclose(imgfile);
} [* End of if else */

} /* End of if else **
} /* End of while (overjlength) */

} ** End of mod-getjimage_value) **

/* Get a value of a standard attribute from the user input to modify */
/* existing standard value(s) in the database.I** ***********************************

void mod_get-std-value)
{

printf('nTable Name:: %s\nAtt Name :: %s\nData Type:: %s",
table-array[table_list[tablecursor]].tablename,
att_array[att-cursorl.att name,
attarray[attcursor].data-type);

printf(' \.Please Enter <<%s>> Value (? if unknow):: ", data-type);
if (strcmp(data-type, "integer") == 0)
modgetjint-valueo; /* Integer data type */

else
if (strcmp(datajtype, "float") == 0)

mod-get float valueo; ** Float data tupe */
else

modget-c20_valueo; /* String c20 data tupe */
/* End of get stdvalueo */

*** * * ****** *** ** ** ********** *** ***** *** * *** **** *** **** **** * ** *** ** ** * * **

/* Get a value of a media attribute from the user input to modify the data */
/* already stored. Can re-enter the description or filename of either image*/
/* or sound media attributes.

void mod-get mediavalue)

printf("nTable Name:: %s\nAtt Name :: %s\nData Type:: %s",
tablearray[tablelist[tablecursor]].table_name,
attarray[att-cursor].att-name,

20'!

att-array[att-cursor] .datajtype);
if (strcmp(datajtype, "image") == 0)
I

img-yalue[img-index] = att-array[attscursor] .media~id;
att-array[att-Cursor] .value-entry = imgjindex;
mod-get-imageyvalueo; /* Image data type *

if (strcmp(imgjecord[irgjndex.fjid,")! 0)

printfQ'NmEnter the description? (yin)::")
if (yes-no-answer() == 'y')
mod.get-descrpo;

else
strcpy(descrp,")

strcpy(imgjyecord[img-jndex] .descrp, descrp);

att-array[attscursor].media-id++;
imgjindex = (imgjindex + 1) % 20;

e1s

snd_value[sndjindex] = att-array[att-ursor].media-id;
att-array[att...cursorl.value-entry = sndjindex;
mod-get -sound-valueo; /* Sound data tupe,*

if (strcmp(snd-record[snd index].f id,")! 0)

printf("\nEnter the description? (yin)::)

if (yes-no-answer() == y')
modget-descrpo;

else
strcpy(descrp,")

strcpy(sndjecord[snd-index] .descrp, descrp);

att -array [attscursor].media-id++;
snd-index = (snd-index + 1) % 20;

1 I* End ofif else */
I/* End of getmedia-value()*

/* Get the values of a tuple from the user input. It begins to loop at the *
1* I1st attribute until the last attribute entered for that modified tuple *

void mod.get-tuple-value()

mnt i = 0,
count = 0;

count = table -arrayltablejist[tablesumror]] .att-count;
att-cursor = table-array[tablejisttable-cursor]] .att-entry;

204

act-media -count = 0;
for (i = 0; i < count; i++i) /* Loop to get value for each attribute ~

strcpy(datajtype, att array[att-cursorl .datajtype);
if ((strcmp(datajtype, "Image") == 0) 11

(strcmp(datajtype, "sound") == 0))

get -media-valueo;
act-media-list[act media-count] = att cursor; /P Collect the *
act-media-count+i; P~ media indices*/

else
get-std-valueO;

att-cursor =att -array[att -cursor] .next_index;
I I"' End of for loop */

I/* End of getjtuple-value *

1* Insert a modified tuple of one particular relation. *

void mod-insert-tuple()

mnt table-found = FALSE; /* Initialize to false *
while (ftable found)

printf('\nEnter table-name:: (Maximum 12 characters); (?for HELP!)\");
table-nametO] = '\0';
gets(table-name);
if (strlen(table_name) >= 13) /* Over maximum name length *

printf('N\nSorry!! Table Name OVER 12 characters!");
putchar('007');

else
I

if (strcmp(table-name, "" =0)

print-all-tableO;
else

strcpy(table-array~table -index] .table name, tablename);
table-found = check-table_nameG;
if (table-found)

I
table-cursor = table -entry;
getuple-valueo;

else

205

I
printf("\nSonry!! Table name: %s NOT found! TRY AGAIN!!",

table-array[tablejindex].table_name);
putchar(\W~7');
I/* End of if else *

/*I End of if else *
/* End of if else *

}/*" End of while (!table found) *
I/* End of insert tupleo *

1* Print out the value of the modified current tuple which the user wants ~
1* to insert. *

void mod~printjtuple()

int i = 0,
count =0,
entry =0;

dlr-scro;
entry =table-array[tablejlist[tablescursor]] .att-entry;
count =table -array[tablejist[tablesursor]].att-count;
printf("\nTable Name:: %s~n",

table-array[tablej- ist[table -cursor]]. tablename);
printf'.nNumber Attribute Nanie\.Data Type\.tValuefn");
for (I = 0; i < count; i-I-I)

I
strcpy(data-type, att array [entry] .data -type);
if (strcmp(data-type. %c20") == 0)
printf(" %d % 13s\1%s\hVt%sY\n" ,(i+l1), att-array[entry] .att name,

att-array[entryl.data-type,
c-value[att array[entry].value entry]);

else
if (strcmp(data-type, "linteger") = 0)
printf(" %1d %13s\t%s\t\±%d~n",(i+1) ,attarray[enty].att-name,

att-array [entry] .data-type,
i_value~att..array[entry].value entry]);
else
if (strcmp(datatype, "float") == 0)

printfC' %1d %13s\t%s\ttz%f\n",(i+1) ,att-array[entryl.att-name,

att-array [entry] .datajtype,
f -value[att-array[entry].value entry]);
else

if (strcmp(data..jype, "image") = 0)

printf(" %1d %13s\t%s\N",(i+1) , attarray[entry].att-name,
att-array[entryl.data-type);

206

if (strcmp(imgjecord[att-array[enflly].value entry].f id,"
==0)

printf('NO VALUE~n");
else

printf("HAS VALIJE~n");

else

printf(' %d %13s\t%s\At",(i+1) , att array[entry].att name,
att array [entry] .datajtype);

if (strcmp(sndjrecord[att-array[entry] .value-entry] .fjid,")
==0)

printf("NO VALUE\n");
else

printf("HAS VALUE\n");

entry = att -array[entry].next index;
/* End of for loop 1*

11* End of mod-print -uple()*

1* Print out the description of media attribute in the modified tuple *

void mod print-media-tupleO
I

int i =0,
entry;

ints = 1;
int cont = TRUE;
int ptter = 0;t* ------- added ------
STR-name data-type;
ptter = table-arraytablejlist~tablescursorll.att-ety/ ---add-
while (cont) I
att-cursor = ptter;
strcpy(data-type, att-array[att cursor] .data-type);
if ((strcmp(datsa type, "Image") = 0) 11 (strcmp(datajtype, "sound") ==0))

goto close;
ptter = att-array~ptter] .next-index;

close:
att cursor = ptter;
entry = att -aray~att -cursor].value-entry;
printf("\nedia Description::Nn");

/* for (i = 0; i < act-media-count; i++)*I
for (i * 0; i < media-counter; i++)

printf('\N~tt_name ::%s", att-array[attsCursorl.att-name);

207

strcpy(data type, att-arrayfatt-cursorl .datajtype);
1*entry = att-array~act-media_list[i]].valueentry;*/
if (strcmp(datajtype, "Image") == 0)

printf("\iFilename :: \'%s\", imig-ecord[entryl.fjid);
printf("\nDescription:: \n«<%s >", imgrecord~entry] .descrp);

I
else

printf('ViFile -name :: \' %s\"', s nd record [entry]. fid);
printf('ViDescription:: \n«<%s>>", snd_record[entry].descrp);

I
ptter = att-array[ptterjl.next-index;
att-cursor = ptter;
while ((c = getcharo) != Nn')

I/* End of for loop*
I1* End of mod-print..mediajtuple()*

1* Print out the value of current attribute *

void mod-print-value()

int entry;
entry = att-array[att-cursor] .valueentry;
dlr-scrO;
printf('\nTable Name:: %s",

table-array[tablejilst[table-cursor]].tablename);
pnintf('NnAttLName ::%s", attarray[attscursor] .att name);
printf('ViData Type: %s", att..array[attscursor] .datajtype);
printf('\nValue ::)
if (strcmp(datajtype. %c20") == 0)

printf('N%sY\n". c-yalue~entry]))
else
if (strcmp(dat&..type, "integer") ==0)

printf("%crm". i-valuefentry]);
else
if (strcmp(data-type, "9float") =0)

pnintf("%fAn". fivalue (entry]);
else
if (strcmp(data-type, "Image") == 0)

printf('%N~==>File-name :: NWsV", imgjecord~entry].fjid);
printf('%N~==>Desciption:: \n«%s \n", img-ecord[entry] .descrp);

208

else

printf('V\±N==>File -name ::\%s\'", snd-record(entryl.f-id);
printf('MN1t==>Description:: \n«<%s>>n", snd~record[entry] .descrp);

I/* End of mod.printvalue()*

/* Connect to parser to generate the facts file. We put the modified media*/
1* description in one facts file "imagel-image-facts" at this time, it ~
/* should be separated later on. *

mnt mod-connect-parser(file id, new descrp, errmessage)
STRpath *file_id;
STR-descrp *new-descrp;
char *efl._message;

STR-path nothing;
STR-descrp empty-descrp;
mnt ISerror = FALSE;
empty-..descrp[O] =V
nothing[O] = N'
printf('\nConnect to PARSER, Please Wait .. Nn)
ISerror = IS replace description(" image". "i-image", file-id, empty-descrp,

new-descip, nothing, empty-descrp, err-message);
P~ HERE, ISfunction call, Connect to parser and generate the ~
P* facts file in "image-imagejfacts" *

if (ISerror)f
return(ISerror);

I
else

return(FALSE);
I/* End of connectparser()*

/P Change the IMAGE values of current tuple which already exists in the *
P* database. The user will insert this modified data. *

void modschange-mg.value(mode)

mnt cursor; P* Previous index of media record array ~
char *err-message;
mnt wrong..desc = TRUE;
cursor = att -array[att -cumsor].value-entry;
img-value[img-index] = att -array[att-cursorimedia-id;
att_array[att-cursorl.value-entry = imgjindex;
printf('\nChange IMAGE file name? (yin):: ");

209

if (yes,_no_answer() 'y')
mod~getimage-alueo; /* Image data type ~

else

imgTecord[img index] .1_id = att-array[att-cursor] .mediaj1d;
strcpy(img-record[imgjindex] .f-id, img record[cursor] .fjid);
imgjecord[imgjindex] .height =imgjecord[cursor. .height;
imgjecord[img-index] .width =imgjecord[cursor] .width,
img-ecord[imgjndex] .depth =img~jecord[cursor] .depth;

printfQ'NnChange IMAGE description? (yin)::)

if (yes no-answer() ='y')

I
mod~get-descrpo;
strcpy(imgjecord[img -ndex] .descrp, descrp);
if (mode == MOD_-MODE)(

printf('Nnf -id=->%s", imgjyecord[imgjndex] .fjd);
printf('Nndescrp==>%s", descrp);
wrong-desc=mod chk-descniption(img-record[imgjindex] .fd, imgjecord[imgjindexl .de-

scrp, err -message);
while (wrongdesc) I
mod-getdescrpo;
strcpy(img-record [irng index] .descrp, descrp);
wrongiesc--mod chk-description(imgjyecord[imgindexl.fid, imgrecord[imgindex].de-

scrp, err_message);
I
if (!wrong-desc)

printf('Nn~nHit RETURN to Continue!!");
while &(= getcharo) != NW);

else
strcpy(img-jecord[imgmndexl .dascrp, ing-jecord[cursor] .descrp);

att-array[attscusorl.media-id+i-
imgm- ndex = (imgjndex + 1) % 20;

I /* End of mod-changejimg..yalue()*

1* Change the SOUND values of current tuple which the user wants to modify *

void mod-change-snc-value(mode)

mnt cursor, /* Previous index of media record array *
char *err-messagze;

210

int wrong-desc = TRUE;
cursor = att-array[att-cursor] .value-entry;
snd-value[sndjindex] = att-array[attsCursor] .media_id;
att_array[att -cursor].value-enfly = snd-index;
printfQ'NnChange SOUND file name? (yin)::")
if (yes no-answer() ==y)
modget-sound-valueo; 1* Sound data type ~

else

sndjecord[snd-jndex] .s-id = att-array[att-cursor] .mediajld;
strcpy(snc-record[sndjindex] .fid, snd record[cursor] .fid);
snd-record[sndjindex] .size = snd-record[cursor] .size;
snd-record[sndjindex] .samp-rate = snd-record [cursor] .sampjyate;
sndjrecord[sndjindex] .encoding = snd-record[cursorl .encoding;
snd-record[snd-index] .duration = snd-record[cursor] .duration;
snd-record[snd-index] .resolution = snd-record[cursorl .resolution;

printf("\.nChange SOUND description? (yin)::")
if (yes-no-answer() == 'y')
I
mod-get -descrpo;
strcpy(sndjecord[snd -index] .descrp, descrp);
if (mode == MOD_-MODE)f

printf('\nf~d==>%s", snd -recordlsndjindex] .fjid);
printf("\ndescrp=->%s", descrp);
wrong desc=mod -chk_description(snd record[snd index] .fid, snd-record[snd index] .descrp,
err_message);
while (wrongdAesc){I
mod-getdescrpo;
strcpy(snd -record[snd~index] .descrp, descrp);
wrongdesc=mod chk-description(sndjrecord[sndjindex] .fid, snd-record[sndjndex] .descrp,

err -message);
I
if (!wrongdesc)

printf("\NftHit RETURN to Continue!!)
while ((c = getcharo) != 'n');

I;
I

else
strcpy(snd-yecord~snd index] .descrp, snd-record[cursorl .descrp);

att-array [atts ursor] .media - d++;
snd -index = (snd -index + 1) % 20;

1 /* End of mod change_snd_valueo *

211

/* Change the values of current tuple which the user want to modify "1

void mod_modify_tuple(mode)
{
int i = 0,

count =0,
entry =0,
order =0;

char more_change ='y';
while (more-change = 'y')
{
modprint-tupleo;
printf("Select the order which you want to change its value::\n");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order);
getcharo; /* To let next gets() work properly *1
entry = table-array[tablejlist[tablescursor]].attentry;
count t able array[table ist[table-cursor]].attcount;
if (1 <= order && order <= count)

I
for (i = 1; i < order; i++)

entry = aft_array[entry].nextindex;
att_cursor = entry; /* Assign the current index of att_array */
strcpy(datajtype, att array[att-cursor].datatype);
modprintvalueo;
printf('NnPlease Enter <<%s>> Value (? if unknow):: ", data-type);
if (strcmp(datajtype, "integer") == 0)1

mod_get__int valueo; /* Integer data type */
formattedflag=TRUE;

I
else
if (strcmp(data.type, "float") =){

mod-get float valueo; /* Float data tupe */
formatted-flag=TRUE;
I
else
if (strcmp(datatype, "c20") = 0) 1

modgetc20-valueo; /* String c20 data tupe */
formattedjflag=TRUE;
}
else
if (strcmp(data-type, "image") == 0) 1

mod change imgvalue(mode);
image-flag=TRUE;

/* ---------------- *
act-medialist[act-media count]=entry;

212

act-mediacount++;

/* -------------------------

else(
modchange snd-value(mode);

sound-flag=TRUE;
/* -----------------------------

actmedialist[act mediacount] =entry;
actmediacount++,;

/* -------------------

}
modprinLvalueo;
I

else
I

printf('AnSorry! You entered the wrcg order!! Please redo again.\n");
putchar(VO7');

} /* End of if else */
printf("Any More Change? (y/n):: ");

more-change = yes-no answero;
} /* End of while */

I /* End of mod-modify_tuple0 *1

/* Display the modified tuple before insertion *11***/
void mod-displayjtuple(mode)
{

char modify ='y';
while (modify == 'y')
I

cIrhscro;
mod_printtupleo;
while ((c= getcharo) != n')

if (media_counter >= 1)
mod_prinLmediajtupleo;

printf("NnAny change before insert? (y/n)::");
modify = yes-no answero;
if (modify == 'y')

modmodifytuple(mode);
} /* End of while */
/ 1* End of display info0 */

213

1* Check the media description by connecting to parser *

int mod-check-media-descrp()
I

nt I = 0,
entry;

int error = FALSE;
char *err-messagte;
while (i < act-media-count && !error)

*eff message 'N;
strcpy(datajtype, att-array[act-mediajist[iII.datajtype);
entry = att-array[act-mediajist[i]] .value-entiy;
if (strcmp(data-type, "image") =-- 0)

if (strcmp(imgjrecord[entry].descrp,")! 0)
error = connectparser(imgjecord[entry] .fid,

img-jecord[entry] .descrp, err-message);

else

if (strcmp(snd record[entry].descrp,"" != 0)
error = connect-parser(snd-record[entry] .fjd,

snd-record [entry] .descrp, errjiies sage);

if (error)

printf('%nThe description for media \'%s\' is NOT acceptable!",
att-array[act-mediajistfi- Il]].att-name);

if (error == DESCRWORDERR)
printf("\nThe system cannot understand the word >>%s<<", err-message);

else
if (error == DESCRSTRUCTUREERR)

printf("\nThe system cannot interpret the phase'n >>%s<<",
err-Message);

else
printf("NnThe program error occur in prolog Rn");

printf('\nPlease modify it. Thank you!");
putcharOO7T);
while((c=getcharo) != Nn')

return(TRUE);

else

214

return(FALSE);
/ * End of check-media -descrp()*

1* Translate SQL statement to insert a media tuple *

void mod-qi insert-mediajtuple(mode, image-counter, snd-ctr)

nt I = 0,
entry;

nt, enter=-O;
1* printf(""nformatted fiag==>%d", formatted~fag);

printf('\nimage-flag==>%d", image~flag);
printf("\nsound -flag==>%d", sound-flag);
printfC"nact -media-count in ql-ins-media-t==>%d", act-media count);
sleep(2);*I
for (i = 0; i < act-media-count; i++)

strcpy(media-name, att array [act-media-list[i]] .att-name);
get_media-nameO;

strcpy(data-type, att..array[ac-mediajlist[i]] .data _type);
entry = att-array[act-mediajist[i].value entry;
if (strcmp(datajtype, "Image") == 0

printf('Nn")
if (image~flag == TRUE) I

printfC' insert into% 12s (,media-name);

printf("ijid ,\n
printf("fjd ,\n
printf("descrp \Nn
printf("height n

printf("depth)\n"');
printf(" values(");

printf(" %d \n
imagescounter);

printf('%%sV\',n

imgjecord[entry] .fjd);

printf(" %d ,\n
imgjecord[entry) .hesih);

printf(" %d N\n

img-ecord~entry] .width);

215

printf(" %d)M\n", img-jecord[entry] -depth);

else I
printf('%nPress ENTER to continue");
while ((= getcharo) != Nn')

if (strcmp(datajtype, "sound") =- 0) 1
printf('Nn ");
if (sounc~flag == TRUJE)(

printf(" insert into % 12s (,media -name);
printf("s - d ,\n
printf("f - d ,n ')

printf("descrp \ni
printf("size)\n I

printf("samp-rateM\
printf("encoding M\
pnintf("duration M\
printf("resolution)\n");
printf(" values (");

printf(" %d \,
snd-ctr);

printf('\'%sV\,n
snd -record[entry] .fid);

printf('%%s\',Nn
snd -record~entry] .descrp);

printf(" %d ,n
snd -ecod[entry) .size);

printf(" %d ,'n
snd -ecord[entry].sanipjate);

printf(" %d ,\n
snd -ecord~entryl .encoding);

printf(" %f \
snd -record[entryl.duration);

printf(" %d);\jn, sndjecord[entry] .resolution);

else({
printf('NnPress ENTER to continue");
while ((= getcharQ) != Nn')

216

/**INSERTIlON OF THE MODIFIED MEDIA TUPLE ININGRES STARTS HERE **
/***********THE INGRES FUNCTION CALLS WRITE MANUALLY""""""""****/
P* # line 2100 "db.sc" */ /*'insert*~/

Ilsqlnit(&sqlca);
Ilwritedb("append to)

lIwritedb(media -name);
Ilwritedb("(");
if (strcmp(data -type, "image") == 0)1
if (image-flag == TRU E){

printf('WnNSERTING MEDIA TUPLE NOW. PLEASE WAIT! Nn");
Ilwnitedb("i-id=");
lIsetdom(1,30,4, &imagescounter);
Ilwritedb(" ,fid=");
Ilsetdom(1,32,0, img record[entry] .fjid);
Ilwritedb(" ,descrp=");
Ilsetdom(1,32,0, img- record[entry] .descrp);
Ilwritedb(" ,height=");
lIsetdom(1,30,4, &img record[entry] .height);
Ilwritedb(" ,width="),
Ilsetdom(1,30,4, &img reodety widt)

Ilwntedb(" ,depth=");
Ilsetdom(1,30,4, &img record[entry] .depth);
Ilwritedb(")");
printf'\nINSERT AN IMAGE TUPLE COMPLETE! Nn");

if (strcmp(datajtype, "sound") =01
if (sound-flag =TRUE)(

printf('WnNSERTING MEDIA TUPLE NOW. PLEASE WAIT! Nn");
11writedb("s id=");
Ilsetdom(1,30,4, &snd -ctr);
Ilwritedb(" Li..d=");
Ilsetdom(1,32,0, snd -record[entry] .fjd);
lIwritedb(' ,descrp=");
llsetdom(1,32,0, snd record~entryl descrp);
Ilwritedb(" ,size=");
Ilsetdom(1,30,4, &snd record[entryj .size);
Ilwntedb(" ,samp-rate=");
Ilsetdom(1,30,4, &snd -record[entry] .sampjyate);
Ilwritedb(" ,encoding-");
lIsetdom(1,30,4, &snd -record[entry].encoding);
Ilwritedb(" ,duration--");
Hsetdom(1,31,4, &snd -record[entry] .duration);
Ilwritedb(" ,resolution=");

217

llsetdom(1,30,4, &snd record[entry] .resolution);
lwritedb("))

pnntf('WnNSERT A SOUND TUPLE COMPLETE! Nn");

Isqyc3&qc)
I

/* # line 2147 "db.sc" */ /* insert *
/************IN.SERT MEDIA TUPLE IN INGRES STOP HERE********************/

printf('RNnpress ENTER to continue");
while ((c = getcharo) ! =\n')

I/* End of for loop*
I/*" End of mod-qL -insert -media -tuple()*

1* Translate SQL statement to insert a modified standard tuple *

void mod-qlinsertjuple(mode)

int i = 0,
count = 0,
entry = 0;

cdr-scro;
entry =table_array [table jisttablesumoij] .attentry;
count =table -array[tablejist[tablescursor]I .att-count;

1* printf("\Nnode in ql-ins -t==>%d", mode);
pnintf('\nact-media-count in qlins~t==>%/d", actmediascount),
sleep(2);*I
printf('\nSQL statement: Mn");
printf(" insert into %12s (",

table-array [table jisttable.cursor]] .table_name);
for (i = 1; i < count; i-i-i)

printf("%l12s,\n", attarraylentry] .attname);
printf("of)
entry = att_array[entryl.next index;

printf("% 12s)\n", att...array[entry].att-nanie);
printf(" values (");
entry = table_alray[tableji st[tablescursor]] .attentby;
for (i = 1; 1 < count; i++)

strcpy(data-type, att-array[entry].data-type);
if (strcmp(data ~type, %c20") ==0)

printf('%%s\',\n", c value[attarray[entry] .value-entryl);
else

218

if (strcmp(data-type, "Integer") = 0)
printf(" %d ,n", iLvalue[att-aray[entry] .value-entry]);

else
if (strcmp(data - ype, "float") == 0)

printf(" %f N\n", f-value[attarray[entry].value-entry]);
else
if (strcmp(datajtype, "Image") == 0)4
if (image-flag==TRUE)
image-counter = img-yalue[att-array[entry] .value-entry];

else
image-counter = imgjecord[img -ndex] .iid;

printf(" %d ,\n", image-counter);

elsel
if (sound-flag==TRUE)

snd-ctr = snc-value[att-array[entry].value-entry];
else

snd-ctr = snd jecordlsnd -index] .s-d;
pnintf(" %d N\n", snd-ctr);

printf("
entry = att-array[entry.next-index;

strcpy(data-type, att-array[entry] .datajype);
if (strcmp(datajtype, "%20") == 0)
printf('\%s');\njn", c value[att-array[entry] .value-entry]);

else
if (strcmp(datajtype, "integer") =-- 0)

printf(" %ld),\nf", i-value[attarray[entry].value entry]);
else
if (strcmp(data-type, "float") = 0)
printf(" %f);\W~", fLyalue[att~aray[entiy].value entry]);

else
if (strcmp(datajtype, "image") = 0) 1

if (image~fag==TRUE)
image -counter = img-.yalue[attarray[entry].value entry];

else
image -counter = imgjecord[imgjindex] .iild;

printf(" %od N\n", unage..counter);

I
elsel

if (soundjilag=TRUE)
snd -ctr = snd-value[attarray[entry].value entry];

else
snd-ctr = snd-record[sndindex].s-id;

219

printf(" %1d ,\n", snd-ctr);

I

/************INSERT STD TUPLE IN INGRES START HERE*******************/
/******* "*THE INGRES FUNCTION CALLS WRITE MANUALL-Y****************/

entry =table-array[tablejlist[tablescursor] .att-entry;
count =table -array~table list[table -cursor]]. att-count;

P* # line 2213 "db.sc" P1 insert ~

printf('WnNSERTING STD TUPLE NOW. PLEASE WAIT! N\n");
Ilsqlnit(&sqlca);
Ilwritedb("append to")
lIwritedb(table -array[table-ist[table-cursor]] .table-name);
Ihvritedb("(");
for (i = 1; 1 < count; i++)
I
IIwritedb(att -array [entry] .att-name);
Ilwritedb("=");
strcpy(data-type, att-array[entryl .data-type);
if (strcmp(data type, %c20") -- 0)

Ilsetdom(1,32,0, cyvaluelatt array[entry] .value-entry]);
else
if (strcmp(data-type, "integer") == 0)

lIsetdom(1,30,4, &i value[att array[entry] .valuesenr]);
else

if (strcmp(data type, offloat") =- 0)
lIsetdom(1,31,4, &f valuellattarray[entry] .value-entry]);

else
if (strcmp(data - ype, "image") == 0)

P* Hsetdom(1,30,4, &img value[att-array[entry] .value-entry]);*I
Ilsetdom(1,30,4, &image counter);

else
P* Ilsetdom(1,30,4, &snd value[att arraylentry] .value-entry]); */

Ilsetdom(1,30,4, &snd-ctr);

Iwritedb(" ,)

entry = attarray~entry].next-index;
I

Ilwritedb(attarray[entry] .att_name);
Ilwritedb("=",);
strcpy(data.jype, att array [entry] .data-type);
if (strcmp(data type, "%20") = 0)

Ilsetdom(1,32,0, c value~attarray~entry] .value-entry]);
else

220

if (strcmp(data-type, "Integer") == 0)
Ilsetdom(1,30,4, &i value[att-array[entryl .value_entr~y]);

else
if (strcmp(data - ype, "float") == 0)

lIsetdom(1,31,4, &f-x alue[att-array[entry] .value-entry]);
else
if (strcmp(data - ype, "image") == 0)

1* Ilsetdom(1,30,4, &imgvalue[att-array[entry] .value-entry]); */
Ilsetdom(1,30,4, &image counter)-

else
/* Ilsetdom(1,30,4, &snd value[att-array[entry] .value-entry]); *f
Ilsetdom(1,30,4, &snd-ctr);

I1writedb(")");
IlsqSync(3,&sqlca);
printf("\nNSERT A STD TUPLE COMPLETE! \n");

I
1* # line 2261 "db.sc" */ /* insert ~
/**************INSERT STD TUPLE IN INGRES STOP HERE********************/

printf("\npress ENTER to continue");
while ((c = getcharo) != \n')

if ((sound-flag == TRUE) 11 (imiage-flag == TRUE)){I
if (act-media-count >= 1)
mod-qlinsert media-tuple(mode, image-counter, snd-ctr);

/*I End of ql-insertjtuple()*

221

APPENDIX C: RUNNING THE DATABASE

The system is configured on the SUN server "VIRGO" under the account /n/virgo/

work/mdbms/MDBMS/dbrose. The user can set up the path from any account to reach the

directory. The files must be copied from the directory to the directory the user will use.

When the directory is copied, then the user must log off and log on again so the system may

follow the new paths arranged now for proper execution. The database main program

executable object code is called db. The user must type "db" in the working directory to run

the MDBMS prototype. However, a check must be made to ensure that the user is an

authorized user to the INGRES DBMS. If the user is not an authorized user, then an error

message will appear on the screen stating it is unable to access those areas. If questions

arise, then the system administrator should be consulted to acquire a path for accessing the

INGRES system.

Db is created using the make command, as several other files are needed to run the

MDBMS prototype. Make is a command generator that executes a list of shell commands

to bring a set of files up to date. Make aligns the dependencies among files. The executable

code files are generated by linking the libraries, object files and from the programming

language source files. The original program source code is called db.sc. The program is

precompiled in the INGRES SQL. This step produces the program in an acceptable C

compiler format program db.c. The C compiler creates the object code db.o and links it to

the libraries object code listed in the Makefile. Some libraries are Sunwindow library,

Sunpixrects library, Suntools library, and INGRES library. More important files that are

applications necessary for the prototype are diction.add, imagei image Jacts and the

prologparser. To check for proper compiling and linking, the user must type make db at

the prompt. The make command then calls the make file designated for the db executable

programming code. The makefile for this db code is not the only copy of a makefile for the

MDBMS on the UNIX system. When we worked on our separate modules of the MDBMS,

I used a version of the database entitled dbrose. For compiling and accessing the dbrose

222

code, the user must type "make -fMakerose dbrose" at the UNIX shell prompt in order to

ensure that the prototype code is up to date. If the dbrose.sc code needs linking and

compiling, then the series of make commands will produce the executable version (dbrose).

If db or dbrose are current, a message stating that "db(rose) is up to date" appears on the

screen. As one or more of the source files are modified, then recompilation followed by

relinking must occur. As in most software engineering projects this process is repeated as

each revision is made on the prototype code. An option of make to automatically perform

the updating tasks is $make db. After this is issued, the Make utility executes the tasks that

must compile and relink after a modification.

A description file usually defines the dependencies between the files and modules.

This description file is usually given the name Makefile. Numerous entries comprise the

description file. Each of these entries is delineated by a line that contains a colon. The colon

indicates the dependency line and the targets. The targets are on the left side of the colon.

The files that the targets depend are on the right of the colon. An example is the following:

OBJMODS= ISfunctions.o, comcprologl.o ISroutine.o

#INGHOME = /ingres

db: db.o $(OBJMODS)

cc db.c -o db

/ingres/libllbqlib/ingres/lib/compatlib

/-lsuntool -Isunwindow -lpixrect -Im

db.c: db.sc

esqlc db.sc

These examples display the dependency of the file db.c on the file db.sc. The

program db.sc is the precompiled by the INGRES SQL.Makefile is shown in Appendix D

223

APPENDIX D: MAKEFILE AND SAMPLE

DICTIONARY

MDBMSPATH - /ntvrgotwork/mdbms/MDBMS

PLPATH -/nlvirgolworklmdbmslMDBMS/PRQLOGSOURCE

OBJMODS - ISfunctions.o ISsubroutine.o rpcjpI_call.o plcall-xdr.o\a
picall -cinto CatalogManagemento SoundModule.o Userlnterface.o CreateModule.o\
InsertModule.o Retrieve.o ImageModule.o ModifyModule.o

PLMODS = $(PLPATH)/dict.pl\
$(PLPATH)/diction.pI \ $(PLPATH)/interface.pI
$(PLPATH)/simple.pI \
$(PLPATH)Iistcutil.pl \
$(PLPATH)/readLcapt.p1 \
$(PLPATH)/variabte.pl\
$(PLPATH)/gen-util.pl \
$(PLPATH)/number.pI \
$(PLPATH)/semantics.pl

DEFINE =defines.h errors.h
Global = GlobalVaribles.h
RPC = plcall.h
FLAGS = -g
SERVER = ai9
RSH = rsb
LINT = lint

FILES = Makefile\
rPc4,Lsrver.c\
rpcjpLcall.c\
plcali.h\
plcall-svc.c \
picall-xdr.c\
picall-clnt.c\
IMPORTANTFILES \
defines.h \
efrors.h \
ISsubroutine.c\
ISfunctions.c\
comcprolog-nou.c

.c.o:; cc -c $(FLAGS) -o $@g $*.c

Retrieve.o CreatModule.o InsertModule.o CatalogManagement.o Userlnterface.o\
SoundModule.o ImageModule.o ModifyModuleco: $(Global)
rpc..pl-call.o rpc..pLserver plcallsvc.o plcall-xdr.o plcaU-clnit.o: $(RPC)

224

Retrieve.o CreTeModule.o InsertModule.o CatalogManagement.o Userlnterface.o
SoundModule.o\ ISfunctions.o ISsubroutine.o rpc p1_call.o rpc-pl-server
ImageModule.o ModifyModule.o: $(DEFINE)

db: db.o $(OBJMODS)
@echo "creating DATABASE..."
cc $(FLAGS) db.o\
$(OBJTMODS) \
/ingres/lib/libqlib /ingres/Ib/compatlib\
-isuntool -Isunwindow -lpixrect -Im\
-0 db

0 db.c: db.sc
esqlc db.sc

picall-xdr_suri4.o: picallxdr.c
$(RSH) $(SERVER) cc -c $(FLAGS)\
.o $(MDBMSPATH)/plcal-xdr-surn4.o\
$(MDBMSPATH)/plcall-xdr.c

picall svc-sun4.o: plall.svc.c
$(RSH) $(SERVER) cc -c $(FLAGS)\
-0 S(MDBMS-PATH)/plcal-svc-sun4.o\
$(MDBMS.PATH4)/plcalLsvc.c
rpc.pserver: rpc-pLserver.c plcaU-svc-sun4.o plcajllxdr-sun4.o comeprolog-neu.c

$(DEFINE)@echo "creating rpc..pl-server."

$(RSH) $(SERVER) cc $(FLAGS) $(MDBMS.YATHi)rpplserver.c\
$(MDBMS_ PATH)/plcall-svc-sun4.o \
$(MDBMS _PATH)/plcalIxdr_sun4.o
-0 $(MDBMSPATH)/rpc..pLserver

prologparser: $(PLMODS) $(PLPATH)/diction.add
@echo "creating prolog-parser."
sort $(PLPATH)/diction.body $(PLPATHi)/diction.add -o $(PLPATH)/diction
cat $(PLPATH)/diction.head $(PLPATH)/diction > $(PLPATH)/diction.pI
rm $(PLPATH)/diction,qof
$(RSH) $(SERVER) qpc -c $(PLPATH/diction.pl
$(RSH) $(SERVER) qpc -D S(PLPATH)/interface -o S(PLPATH)/prolog..jarser
my $(MDBMSPATH)/polog-parser $(MDBMSPYATH)/prolog-parser.Iast Version
cp $(PLPATH)prolo&..paser $(MDBMSYPATH)/prolog-paser

Int:*.c
$(LINT $?
@touch hIt

print: $(FILE)

@echo "Primt the following files:"

@echo "Interrupt with Control c"
@sleep 3
pr $? 1 print
@ touch

225

SAMPLE DICTIONARY FOR PROLOG PARSER

propnoun(CHunter-Liggett',[namec'Hunter-Liggett')place).
propnoun(CJolon',tnameC*Jolon'),place]).
propnoun(CNacimiento' ,[nameC'Nacimiento').place]).
propnoun(CPacific',[nhrnefPacific Ocean'),place]).
propnoun(['Pacific','Ocean'],nameC'Pacific Ocean'),place]).
propnoun([WorldXWar.,'IW],nameC World War Wj),war(ww2)]).
propnoun(CMacy"s,[nameC'Macys).placeD.

month(CJanuary',[nameC*Januaiy')month name]).
monthC'February',[name('February'),month._ame]).
month('March,(nam.C'March').monthjiameD).
month('AprilF,[nameC'April'),month.name).
month('May',EnameC'May'),morith.name]).
month(CJune ,(name('iune'),monthname]).
month('July',1nameC'July')nonth nnme]).
monthC*AugustX,[nameC'August'),month-iame).
month('Septembe&,[nameC'Septembe'),month.name).
month(COctober',(nameC*October'),month~name).
monthC'Novemnber',[nameC'November'),month-lame]).
month('Docember' ,(nameC'Dwember'),month name]).

propnoun(CChristmas',[nameC'Christmas'),hoiday.yame]).
propnoun(CColumbus Day',(nameCColumbus Day'),holiday name]).
propnoun('lndependence Day ,lnameC Independence Day'),holidayname])./* bh ->nosc alv_images *

noun(atlantic.ML):- nowl(ocean, NILtype). union([name(atlantic~acean).place].M~type, ML).
naun(destroyerML):- noun(warship, MLsup), union([size(-)], MLaup, ML).
noun(fregate,tship,fregateJ). noun(boat,[ship]).
noun(u-boat,[ahip,under surface ~vehicle]).
noun(submarine.ship,unidersurface vehicle]).
noun(battleshipML):- noun(wurship, MLsup), untion([battleship,size(+)]. MLsup. ML).
noun(cruiser,ML):- noun(warship, MLsup), unionqfcruiser. size(-)1,Mfisup, ML).
noun(gunboat,[ship,gunboat]). noun(freighter,[shipfreighter]).
noun(aircraft.carrier,[ship,aircraft-carrier]).
noun(tink.ershipjtanker]). noun(cutter,[ship,cutterl).
noun(warshipML):-noun(ship. NILsup), union(twarship,color(gray), hullnumber(number)]. MGsup. NIL 1),
noun(navy.ML2). union(ML1,ML2,ML).
noun(ship~lship,vehicle]). noun(veasel,[shipvehicleD).
noun(aea,(sea,goofeatureD).
noun(ocean,[aeageofeature]).
noun(wave,[seageofeature.D.
noun(lak..see(-)D).
noun(pond,[lake(-)]).
noun(navy,[navy,organizationl).
/* __m _ /a

noun(road,froad(+)]).
noun(routeAroad(+)]).
noun(track,[road(-)1D.
noun(pmth,(road(-) 1).
noun(ariny,[aziy,organizationl).
noun(tank.ftank.vehicle]).

226

noun(carrier,[carrier,vehicle]).
nounoj..p,jeep,vehicle]).
noun(hil,[hil,geofeature1).
noun(mouinain,[mountai,gefoeature]).
noun(river,[river,geofeatureJ).
noun(stream,[river,geofeature]).
noun(creek,[river~geofeature]).
noun(arroyo,(river,geofeature]).
nouno unction,U unction]).
noun(intersection,Uunctian]). /* KMW *
noun(crossroads~j unction]).
noun(plant,[plant]).
noun(vegetation,[vegetation]).
noun(tre,(plant(+)]).
rloun(bush,[plant(O)])./* bh *
noun(shrub,plmnt(O)J).
noun(brush,[vegetation(-)]).
noun(forest,[vegetation(+)]).
noun(region,[region]).
noun(abject,[region]).
noun(area,(region]).
noun(stretch,(region]).
noun(spot~region]).
noun(shape,[region]).
noun(strip,strp,regiun.Mb~rpe(narrow)]).
noun(side,[side,region]).
noun(half,[halfiregion,size(big)D).
noun(boundary,tedge,boundary]).
noun(edge,[edge,boundary]).
noun(righ,[region,xcoordifiate(i.).
noun(left.[region,xcoordinat(-)]).
noun(middlejregion,xcoordinate(O),ycoordinate(O)]).
noun(north,[region~upperj-egion,ycaordinate(+)]).
noun(east,[regionrightrsgion,xcoordinate(+)]).
noun(south,[regionlowerregion,ycoordinate(-)]).
noun(wea,(region,leftregion,xcoordinate(-)]).

noun(northeast,[region,upper-ight-region,xcoordinate(+),ycoordinate(+)]).
noun(southeast,[region~lowe...right~egion,xcoordinate(+),ycoordint(-)].
noun(southwest~regionjower -left-region,xcoordiriate(-),ycoordinate(-)]).
noun(northweat,[rsgion~upperj-lfLregion,xcoordirae(-),ycoordinate(+)]).
noun(land,[twmrin,eath]).
noun(earth,[terrain,earth]).
noun(rock,[teffainjrock]).
noun(grau,[terrain,grass]).
noun(sand,[twrain,sandD. /* KMW *
noun(cover,[terrainD).
noun(temrin,[teffuin]).

nowi(groupsetJ).
noun(number,[set]).
noun(couple,(aetl). /* KMW *
noun(bunch.[setl)./* bh *

227

noun(convoy,fset]).
noun(flec,(set]).
noun(motion,[motion]).
rloun(maringj[timelov]).
noun(evenng,[tune-loc]).
noun(noon,(timeloc]).
noun(midnightl(time -loc]).
noun(afternoon,(timelovl).
noun(night,[tnme,_bc]).
noun(dusk,[timebloc]).
rioun(dawn,[timeloc]).
noun(sunrnse,[tinieloc]).
noun(sunset,[timoeloc]).
noun(secorid,[timeloc]).
noun(minute,[time-loc]).
rioun(hour,[time-loc]).
noun(day,[timejoc]).
noun(week,[tirne-lc]).
noun(month,(tinie -oc]).
noun(year,[tixnejoc]).
noun(decade,[tirnejoc]).
noun(past,(time boo]).
noun(present,(tune~boc]).
nounQ'uture,(tirne -oc]).
noun(spring.[timoejoc]).
noun(sUMMef,[tiMG boo]).
noun(autumn,(tuxne,_boo]).
noun(falI,(time boo]).
noun(winter,ttinme -oc])

noun(turn[turn]).
noun(bend,[turn]).
noun(line~fline]). 1* KMW *

adjective(whlt,cooor(white)]).
adjwcive(black,Ccolor(black)]).
adjective(gray,[Color(gray)J).
adjective(rough,[textur(roughi)]).
adjwcive(mixed~ftextur(rough)]).
adjective(htrogeneous,[texture(rough)]).
adjective(smooth,[texzure(smooth)]).
adjective(hoOSMOnOU3,[texture(smooth)]).
adjectiv(foreTed,[teffain(foested)]).
adjectiv(bar.[terrain(unfored)]).
adjective(acattred,[diaprsion(wids)]).
adjectiv(sca,(dispersion(widefli.
£djectw.(clustred,dispersion(naffow)]).
adjective(big,[size(+)]). adjeaive~argej[size(+)]).
adjective(smalsize(-)]). adjective(tiny,fsize(-)]).
sdjoctiveQong,[size(+)])./* bh *
adjecie(taL(hoight(+)]).
sdjwutv(short,Dhight(-)J).
adjective(flat.Cheight(-)]). 1* KMW *

228

adjectiveCAmericanX,[naionality(us)]).
adjective(CUS,[naionality(us)]).
adjecrtive(CRussian',nationslity(ussr)D).
adjecive(QSaviet',[nationality(ussr)]).
adjective(CNATOX[nationality(nato)J).
adjective(american,[natiornality(us)]).
adjective(us,(niationality(us)]).
adjective(russian.[nationality(ussr)]).
adjective(soviet~nationality(ussr)]). /* bh *
adjective(german,[nationality(germany)D).
adjective(british,(nationality(uk)]).
adjective(high,[height(+)]).

adjective(nato,Enationality(nato)]).
adjective(upper,(ycoordinate(+)]).
adjective(1ower.[ycoordinate(-)J).
adjective(right~xcoardinat.(+)]).
adjective(left,(xcoordinate(-)]).
adjective(middle,[xcordinate(O),ycoordinate(O)]).
adjective(broad,[width(+)]).
adiective(wide,(width(+)]D.
adjective(narrow,[width(-)]).
adjective(slim,(width(-)]).
adjective(othier,(cardinahty(1),difforent]).
adjectiv(single,tcardinality(1)b).
adjective first,(csrdinahity(1)]).
adjective(lone,[cardinality(1)]).
adjective(one,(cardinality(l)]).
adjective(second,[cardinality(l),differentl).
adjectiv.(seprate,[cardinality(1),different]).
adjective(two.[cardinality(2)]).
adjective(three,(cardinality(3)1).
adjective(few,[cardinality(-)]).
adjective(many,(cardinality(+)]).
adjective(vurious,(cardinality(+)]). /* KMW *
adjective(north,Edirmcion(O)]).
adjective(east,(direction(90)]).
adjective(south,[direction(1 80)]).
adjective(weat.[direction(270)]).
adjective(northeast,(direction(45)]).
adjective(northweat,[direcion(3 15)]).
adjective(southeast,[direction(135)]).
adjective(southwest,(direction(225)1D.

datenniner(th,dafinite]).
datermine&(a,[iridefinite]).
deteninef(an,indefite]).
determiner(some,[indefite]).
datermine&(several,[indefinite]).
determiner(one,(definite,cardinality(1)]).
determina(two(definite~cardinality(2)]).
detwmiiner(no,[definite,cardinality(O)]).
detrminer(many,[definite,cadinality(+)]).

229

deZtrminer(another,[defimwtecardinality(1),difforent]).
varb(have,[transitive]).
verb(own,[transitive]).
verb(inow,[transitive]).
verb(reach,[transitive]).
verb(go,Ctransitivel).
verb(head,(transitive]).
verb(leave,[transitive]).
verb(visit,transitive]),
verb(se,transitive]).
verb(view,[transitive]).

verbarrie~fntrasitie]9
verb(arri,[intransitive]).

verb(stay,fintransitive]).
verb(depart,[intransitive]).
verb(come,[intransitive]).
verb(termninateintrnsitive]).
verb(end,[intransitive]).
verb(run,fintransitive]).
verb(turn,[intransitive]).
verb(bend,[intransitive]).
verb(cut,ftransitive]).
verb(separate,(transitive]).

verb(shape,(transitivel).
verb(cross,(transitive]). /* KMW *
verbojoin,[tbuiuitive]). /* KMW */
verb(movej[motion,intransitive]). /*' bh *
verb(sail,[motionirntransitiveD). I* bh *

aux(willjtensefuture)]).
aux(can,[enablement]).
aux(may,[possibility]).
aux(has,[tense(past).singular]).
aux(hav,[tense(past),plural]).

advarb(soon,[time(short)J).
adverb(quickly,[time~short)]).
advarb(north,(direction(O)]).
adverb(sast,[direion(90)]).
advarb(south,[direction(18O)1b.
adverb(wet,[direction(270)]).
advab~wetward,direction(270)]). /* bh *
advarb(northmat~dirgction(45)]).
advarb(northweat,[direction(3 15)]).
advarb(southsaa,[dirction(135)]).
advarb(southwat[dirction(225)]).
advarb(tomorrow,[tim(1)J).
advarb(now,time(O)J).
advarb~oday[tftm.(O)J).
advarb(yeaw~dy(ime(-1)).
advarb(oftenjfrequency(high)]).

doeaword(do~aItenaepremnt)]).

230

doesword(do,(tonse(present)J).
doesword(did,[tense(past)]).
doesword(has,[tense(pst),silgularJ).
doesword(have,(tense(past),plural]).

tobe(was,[tense(past)]).
tobe(wereCtense(past),plural]).
tobe(were,(tense(subjunctive),singular]).

preposition(at.[property(location)]).
preosition(at,[property(timespec)]).
preposition(in,[property(inside)]).
prcposition(in.(property(in..periad)]).
preposifion(within.[property(inside)]).
preposifion(within[property(inperiod)]).
prcposition(through,[property(partjinside)]).
preposition(between,[property(partinside)]).
preposition(among,[property(part-inside)J).
preposifion(to,[property(destination)]).
prepositian(to,[property(time.dest)]).
preposition(from,[property(source)]).
proposition(from.(property(timesrc)]).
preposition(for.(property(purpose)]).
preposition(for,[property(beneficiary)]).
preposition(for,(praperty(time-spec)]).
preposition(with,[property(contains)]).
preposition(with,[property(coagent)]).
preposifion(with.[property(tool)]).
preposition(abavej[proprty(above)]).
preposition(on,[property(above)]).
preposiion(over,(property(abovo)]).
preposition(b-elow,[property(b.Iow)]).
preposition(along,[prorperty(beside)]).
preposition(beside,[proprty(beuide)]).
preposition(of.[property(subtype)]).
preposition(of,[property(part9)]).
preposition(of,(property(owrier)D).
preposition(before(propety(time...spec)])-
preposition(aftTr,[property(tim.._spec)])
preposition(untiijfproperty(timo..spec)]).
preposition(during,[property(tiiespec)]).

clausehead(that,(]).
clausehead(which,O).
clausehemd(who,[J).

conjunction(and,[conjunction(and)]).
conjunction(or,[conjunction(or)]).
conjunction(but,[conjunction(and)]).
conjunction(plus,[conjunction(and)]).

punctuation(comma,fl).

231

LIST OF REFERENCES

[Ref. 1] Atila, Y.V., Design and Implementation of a Multimedia DBMS: Sound
Management Integration, Master's Thesis, Naval Postgraduate School,
Department of Computer Science, Monterey, CA, December 1990.

[Ref. 2] Aygun, H., Design and Implementation of a Multimedia DBMS: Complex
Query Processing, Master's Thesis, Naval Postgraduate School, Department
of Computer Science, Monterey, CA, September 1991.

[Ref. 3] Bertino, E., Gibbs, S., Rabitti, F., Thanos, C., and Tsichritzis, D., A
Multimedia Document Server, in Proc. 6th Japanese Advanced Database
Symposium (Tokyo, Aug. 1986), Information Processing Society of Japan,
1986, pp.123-134.

[Ref. 4] Bertino, E., Rabitti, F., Gibbs, S., Query Processing in a Multimedia
Document System, ACM Trans. on Office Information Systems, Vol. 6, no. 1,
Jan. 1988, pp.1-41.

[Ref. 5] Chrisodoulakis, S., Theodoridou, M., Ho, F, Papa, M., and Pathria, A.,
Multimedia Document Presentation, Information Extraction, and Document
Formation in MINOS: A Model and a System, ACM Transactions on Office
Information Systems, vol. 4, no. 4, Oct. 1986, pp. 345-383.

[Ref. 61 Dulle, J., The Scope of Descriptive Captions for Use in a Multimedia
Database System, Master's Thesis, Naval Postgraduate School, Department
of Computer Science, Monterey, CA, June 1990.

[Ref. 7] Kiem, D., and Lum, V. Y., A Graphical Database Interface for a Multimedia
DBMS, Report no. NPS52-91-013, Naval Postgraduate School, Monterey,
CA, June 1991.

[Ref. 8] Kosaka, K., Kajitani, K., and Satoh, M., An Experimental Mixed-Object
Database System, in Proc IEEE CS Office Automation Symposium
(Gaithersburg, MD, April 1987), IEEE CS Press, order no. 770, Washington
1987, pp. 57-66.

[Ref. 9] Lum, V. Y, and Meyer-Wegener, K., A Conceptual Design of a Multimedia
DBMS for Advanced Applications, Report no. NPS52-88-025, Naval
Postgraduate School, Monterey, CA, August 1988.

[Ref. 10] Lum, V. Y., and Meyer-Wegener, K., A Multimedia Database Management
System Supporting Contents Search in Media Data, Report no. NPS52-89-
020, Naval Postgraduate School, Monterey, CA, March 1989. Also in
Advances in Computing and Information, Proceedings of the International

232

Conference on Computing and Information (ICCI '90), Niagra Falls,
Canada, May 23-26, 1990 and to appear in Lecture Notes in Computer
Science, Springer Verlag.

[Ref. I I] Meyer-Wegener, K., Lur, V. Y., and Wu, C.T., Image Database management
in a Multimedia System, in Visual Database Systems, (IFIP TC2/G2.6
Working Conference, Tokyo, Japan, April 3-7, 1989), Ed. T. L. Kini;, North-
Holland, Amsterdam 1989, pp. 497-523.

[Ref. 121 Meyer-Wegener, K., et al., Managing Multimedia Data, Report no. NPS52-
88-010, Naval Postgraduate School, Monterey, CA, March 1988.

[Ref. 13] Peabody, C., Design and Implementation of a Multimedia DBMS: Graphical
User Interface Design and Implementation, Master's Thesis, Naval
Postgraduate School, Monterey, CA, September 1991.

[Ref. 14] Pei, S., Design and Implementation of a Multimedia DBMS: Catalog
Management, Table Creation and Data Insertion, Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 1990.

[Ref. 15] Pongsuwan, W., Design and Implementation of a Multimedia DBMS:
Retrieval Management, Master's Thesis, Naval Postgraduate School,
Monterey, C, December 1990.

[Ref. 16] Rowe, N., and Guglielmo, E., Exploiting Captionsfor Access to Multimedia
Databases, to appear in IEEE Computer, 1991.

[Ref. 17] Sawyer, G., Managing Sound in a Relational Multimedia Database System,
Master's Thesis, Naval Postgraduate School, Department of Computer
Science, Monterey, CA, December 1988.

[Ref. 18] Stonebraker, M., and Rowe, L., The Design of POSTGRES, Proc. SIGMOD
Conference, Washington D. C., May 1986.

[Ref. 19] Thomas, C.A., A Program Interface Prototype for a Multimedia Database
Incorporating Images, Master's Thesis, Naval Postgraduate School,
Department of Computer Science, Monterey, CA, December 1988.

[Ref. 20] Wu, C.T., Nardi P., Turner, H., Antonopoulos, D., Argos Next Generation
Shipboard Information Management System, Report no. NPS52-90-006,
Naval Postgraduate School, Department of Computer Science, Monterey,
CA. December 1989.

[Ref. 21] Woelk, D. and Kim, W. Multimedia Management in an Object-Oriented
Database System, Proc. 13th Int. Conf on VLDB, Brighton (England),
September 1987.

233

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, California 93943-5100

Center for Naval Analysis
4401 Ford Ave.
Alexandria, Virginia 22302-0268

John Maynard
Code 42
Command and Control Departments
Naval Ocean Systems Center
San Diego, California 92152

Dr. Sherman Gee
ONT-221
Chief of Naval Research
880 N. Quincy Street
Arlington, Virginia 22217-5000

Leah Wong
Code 443
Command and Control Departments
Naval Ocean Systems Center
San Diego, California 92152

Professor Vincent Y. Lum 2
Code CsLm
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Rosemary E. Stewart 2
1125 Park Avenue
Port Hueneme, California 93041

234

Professor C. Thomas Wu
Code CsWu
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Dr. Bernhard Holtkamp
University of Dortmund
Software Technology
P.O. Box 500
D-4600 Dortmund 50 / GERMANY

Professor Klaus Meyer-Wegener
University of Erlangen-Nuernberg
IMMD VI, Martensstr. 3,
5250 Erlangen / GERMANY

235

